mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
274 lines
11 KiB
Python
274 lines
11 KiB
Python
import tempfile
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import (
|
|
DEISMultistepScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
DPMSolverSinglestepScheduler,
|
|
UniPCMultistepScheduler,
|
|
)
|
|
|
|
from .test_schedulers import SchedulerCommonTest
|
|
|
|
|
|
class DEISMultistepSchedulerTest(SchedulerCommonTest):
|
|
scheduler_classes = (DEISMultistepScheduler,)
|
|
forward_default_kwargs = (("num_inference_steps", 25),)
|
|
|
|
def get_scheduler_config(self, **kwargs):
|
|
config = {
|
|
"num_train_timesteps": 1000,
|
|
"beta_start": 0.0001,
|
|
"beta_end": 0.02,
|
|
"beta_schedule": "linear",
|
|
"solver_order": 2,
|
|
}
|
|
|
|
config.update(**kwargs)
|
|
return config
|
|
|
|
def check_over_configs(self, time_step=0, **config):
|
|
kwargs = dict(self.forward_default_kwargs)
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None)
|
|
sample = self.dummy_sample
|
|
residual = 0.1 * sample
|
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
|
|
|
|
for scheduler_class in self.scheduler_classes:
|
|
scheduler_config = self.get_scheduler_config(**config)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
# copy over dummy past residuals
|
|
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
scheduler.save_config(tmpdirname)
|
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
|
|
new_scheduler.set_timesteps(num_inference_steps)
|
|
# copy over dummy past residuals
|
|
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
|
|
|
|
output, new_output = sample, sample
|
|
for t in range(time_step, time_step + scheduler.config.solver_order + 1):
|
|
t = scheduler.timesteps[t]
|
|
output = scheduler.step(residual, t, output, **kwargs).prev_sample
|
|
new_output = new_scheduler.step(residual, t, new_output, **kwargs).prev_sample
|
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
|
|
|
|
@unittest.skip("Test not supported.")
|
|
def test_from_save_pretrained(self):
|
|
pass
|
|
|
|
def check_over_forward(self, time_step=0, **forward_kwargs):
|
|
kwargs = dict(self.forward_default_kwargs)
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None)
|
|
sample = self.dummy_sample
|
|
residual = 0.1 * sample
|
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
|
|
|
|
for scheduler_class in self.scheduler_classes:
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
# copy over dummy past residuals (must be after setting timesteps)
|
|
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
scheduler.save_config(tmpdirname)
|
|
new_scheduler = scheduler_class.from_pretrained(tmpdirname)
|
|
# copy over dummy past residuals
|
|
new_scheduler.set_timesteps(num_inference_steps)
|
|
|
|
# copy over dummy past residual (must be after setting timesteps)
|
|
new_scheduler.model_outputs = dummy_past_residuals[: new_scheduler.config.solver_order]
|
|
|
|
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
|
|
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
|
|
|
|
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
|
|
|
|
def full_loop(self, scheduler=None, **config):
|
|
if scheduler is None:
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config(**config)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config(**config)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
num_inference_steps = 10
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
for i, t in enumerate(scheduler.timesteps):
|
|
residual = model(sample, t)
|
|
sample = scheduler.step(residual, t, sample).prev_sample
|
|
|
|
return sample
|
|
|
|
def test_step_shape(self):
|
|
kwargs = dict(self.forward_default_kwargs)
|
|
|
|
num_inference_steps = kwargs.pop("num_inference_steps", None)
|
|
|
|
for scheduler_class in self.scheduler_classes:
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
sample = self.dummy_sample
|
|
residual = 0.1 * sample
|
|
|
|
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
|
|
kwargs["num_inference_steps"] = num_inference_steps
|
|
|
|
# copy over dummy past residuals (must be done after set_timesteps)
|
|
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.10]
|
|
scheduler.model_outputs = dummy_past_residuals[: scheduler.config.solver_order]
|
|
|
|
time_step_0 = scheduler.timesteps[5]
|
|
time_step_1 = scheduler.timesteps[6]
|
|
|
|
output_0 = scheduler.step(residual, time_step_0, sample, **kwargs).prev_sample
|
|
output_1 = scheduler.step(residual, time_step_1, sample, **kwargs).prev_sample
|
|
|
|
self.assertEqual(output_0.shape, sample.shape)
|
|
self.assertEqual(output_0.shape, output_1.shape)
|
|
|
|
def test_switch(self):
|
|
# make sure that iterating over schedulers with same config names gives same results
|
|
# for defaults
|
|
scheduler = DEISMultistepScheduler(**self.get_scheduler_config())
|
|
sample = self.full_loop(scheduler=scheduler)
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_mean.item() - 0.23916) < 1e-3
|
|
|
|
scheduler = DPMSolverSinglestepScheduler.from_config(scheduler.config)
|
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config)
|
|
scheduler = UniPCMultistepScheduler.from_config(scheduler.config)
|
|
scheduler = DEISMultistepScheduler.from_config(scheduler.config)
|
|
|
|
sample = self.full_loop(scheduler=scheduler)
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_mean.item() - 0.23916) < 1e-3
|
|
|
|
def test_timesteps(self):
|
|
for timesteps in [25, 50, 100, 999, 1000]:
|
|
self.check_over_configs(num_train_timesteps=timesteps)
|
|
|
|
def test_thresholding(self):
|
|
self.check_over_configs(thresholding=False)
|
|
for order in [1, 2, 3]:
|
|
for solver_type in ["logrho"]:
|
|
for threshold in [0.5, 1.0, 2.0]:
|
|
for prediction_type in ["epsilon", "sample"]:
|
|
self.check_over_configs(
|
|
thresholding=True,
|
|
prediction_type=prediction_type,
|
|
sample_max_value=threshold,
|
|
algorithm_type="deis",
|
|
solver_order=order,
|
|
solver_type=solver_type,
|
|
)
|
|
|
|
def test_prediction_type(self):
|
|
for prediction_type in ["epsilon", "v_prediction"]:
|
|
self.check_over_configs(prediction_type=prediction_type)
|
|
|
|
def test_solver_order_and_type(self):
|
|
for algorithm_type in ["deis"]:
|
|
for solver_type in ["logrho"]:
|
|
for order in [1, 2, 3]:
|
|
for prediction_type in ["epsilon", "sample"]:
|
|
self.check_over_configs(
|
|
solver_order=order,
|
|
solver_type=solver_type,
|
|
prediction_type=prediction_type,
|
|
algorithm_type=algorithm_type,
|
|
)
|
|
sample = self.full_loop(
|
|
solver_order=order,
|
|
solver_type=solver_type,
|
|
prediction_type=prediction_type,
|
|
algorithm_type=algorithm_type,
|
|
)
|
|
assert not torch.isnan(sample).any(), "Samples have nan numbers"
|
|
|
|
def test_lower_order_final(self):
|
|
self.check_over_configs(lower_order_final=True)
|
|
self.check_over_configs(lower_order_final=False)
|
|
|
|
def test_inference_steps(self):
|
|
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
|
|
self.check_over_forward(num_inference_steps=num_inference_steps, time_step=0)
|
|
|
|
def test_full_loop_no_noise(self):
|
|
sample = self.full_loop()
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_mean.item() - 0.23916) < 1e-3
|
|
|
|
def test_full_loop_with_v_prediction(self):
|
|
sample = self.full_loop(prediction_type="v_prediction")
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_mean.item() - 0.091) < 1e-3
|
|
|
|
def test_fp16_support(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config(thresholding=True, dynamic_thresholding_ratio=0)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
num_inference_steps = 10
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter.half()
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
for i, t in enumerate(scheduler.timesteps):
|
|
residual = model(sample, t)
|
|
sample = scheduler.step(residual, t, sample).prev_sample
|
|
|
|
assert sample.dtype == torch.float16
|
|
|
|
def test_full_loop_with_noise(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
num_inference_steps = 10
|
|
t_start = 8
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
# add noise
|
|
noise = self.dummy_noise_deter
|
|
timesteps = scheduler.timesteps[t_start * scheduler.order :]
|
|
sample = scheduler.add_noise(sample, noise, timesteps[:1])
|
|
|
|
for i, t in enumerate(timesteps):
|
|
residual = model(sample, t)
|
|
sample = scheduler.step(residual, t, sample).prev_sample
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 315.3016) < 1e-2, f" expected result sum 315.3016, but get {result_sum}"
|
|
assert abs(result_mean.item() - 0.41054) < 1e-3, f" expected result mean 0.41054, but get {result_mean}"
|
|
|
|
def test_beta_sigmas(self):
|
|
self.check_over_configs(use_beta_sigmas=True)
|
|
|
|
def test_exponential_sigmas(self):
|
|
self.check_over_configs(use_exponential_sigmas=True)
|