mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* add fast tests for dpm-multi * add more tests * style --------- Co-authored-by: yiyixuxu <yixu310@gmail,com>
177 lines
6.6 KiB
Python
177 lines
6.6 KiB
Python
import torch
|
|
|
|
from diffusers import DDIMScheduler
|
|
|
|
from .test_schedulers import SchedulerCommonTest
|
|
|
|
|
|
class DDIMSchedulerTest(SchedulerCommonTest):
|
|
scheduler_classes = (DDIMScheduler,)
|
|
forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
|
|
|
|
def get_scheduler_config(self, **kwargs):
|
|
config = {
|
|
"num_train_timesteps": 1000,
|
|
"beta_start": 0.0001,
|
|
"beta_end": 0.02,
|
|
"beta_schedule": "linear",
|
|
"clip_sample": True,
|
|
}
|
|
|
|
config.update(**kwargs)
|
|
return config
|
|
|
|
def full_loop(self, **config):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config(**config)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
num_inference_steps, eta = 10, 0.0
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter
|
|
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
for t in scheduler.timesteps:
|
|
residual = model(sample, t)
|
|
sample = scheduler.step(residual, t, sample, eta).prev_sample
|
|
|
|
return sample
|
|
|
|
def test_timesteps(self):
|
|
for timesteps in [100, 500, 1000]:
|
|
self.check_over_configs(num_train_timesteps=timesteps)
|
|
|
|
def test_steps_offset(self):
|
|
for steps_offset in [0, 1]:
|
|
self.check_over_configs(steps_offset=steps_offset)
|
|
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config(steps_offset=1)
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
scheduler.set_timesteps(5)
|
|
assert torch.equal(scheduler.timesteps, torch.LongTensor([801, 601, 401, 201, 1]))
|
|
|
|
def test_betas(self):
|
|
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
|
|
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
|
|
|
|
def test_schedules(self):
|
|
for schedule in ["linear", "squaredcos_cap_v2"]:
|
|
self.check_over_configs(beta_schedule=schedule)
|
|
|
|
def test_prediction_type(self):
|
|
for prediction_type in ["epsilon", "v_prediction"]:
|
|
self.check_over_configs(prediction_type=prediction_type)
|
|
|
|
def test_clip_sample(self):
|
|
for clip_sample in [True, False]:
|
|
self.check_over_configs(clip_sample=clip_sample)
|
|
|
|
def test_timestep_spacing(self):
|
|
for timestep_spacing in ["trailing", "leading"]:
|
|
self.check_over_configs(timestep_spacing=timestep_spacing)
|
|
|
|
def test_rescale_betas_zero_snr(self):
|
|
for rescale_betas_zero_snr in [True, False]:
|
|
self.check_over_configs(rescale_betas_zero_snr=rescale_betas_zero_snr)
|
|
|
|
def test_thresholding(self):
|
|
self.check_over_configs(thresholding=False)
|
|
for threshold in [0.5, 1.0, 2.0]:
|
|
for prediction_type in ["epsilon", "v_prediction"]:
|
|
self.check_over_configs(
|
|
thresholding=True,
|
|
prediction_type=prediction_type,
|
|
sample_max_value=threshold,
|
|
)
|
|
|
|
def test_time_indices(self):
|
|
for t in [1, 10, 49]:
|
|
self.check_over_forward(time_step=t)
|
|
|
|
def test_inference_steps(self):
|
|
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
|
|
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
|
|
|
|
def test_eta(self):
|
|
for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
|
|
self.check_over_forward(time_step=t, eta=eta)
|
|
|
|
def test_variance(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
|
|
assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
|
|
assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
|
|
assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
|
|
assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
|
|
assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
|
|
|
|
def test_full_loop_no_noise(self):
|
|
sample = self.full_loop()
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 172.0067) < 1e-2
|
|
assert abs(result_mean.item() - 0.223967) < 1e-3
|
|
|
|
def test_full_loop_with_v_prediction(self):
|
|
sample = self.full_loop(prediction_type="v_prediction")
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 52.5302) < 1e-2
|
|
assert abs(result_mean.item() - 0.0684) < 1e-3
|
|
|
|
def test_full_loop_with_set_alpha_to_one(self):
|
|
# We specify different beta, so that the first alpha is 0.99
|
|
sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01)
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 149.8295) < 1e-2
|
|
assert abs(result_mean.item() - 0.1951) < 1e-3
|
|
|
|
def test_full_loop_with_no_set_alpha_to_one(self):
|
|
# We specify different beta, so that the first alpha is 0.99
|
|
sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01)
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 149.0784) < 1e-2
|
|
assert abs(result_mean.item() - 0.1941) < 1e-3
|
|
|
|
def test_full_loop_with_noise(self):
|
|
scheduler_class = self.scheduler_classes[0]
|
|
scheduler_config = self.get_scheduler_config()
|
|
scheduler = scheduler_class(**scheduler_config)
|
|
|
|
num_inference_steps, eta = 10, 0.0
|
|
t_start = 8
|
|
|
|
model = self.dummy_model()
|
|
sample = self.dummy_sample_deter
|
|
|
|
scheduler.set_timesteps(num_inference_steps)
|
|
|
|
# add noise
|
|
noise = self.dummy_noise_deter
|
|
timesteps = scheduler.timesteps[t_start * scheduler.order :]
|
|
sample = scheduler.add_noise(sample, noise, timesteps[:1])
|
|
|
|
for t in timesteps:
|
|
residual = model(sample, t)
|
|
sample = scheduler.step(residual, t, sample, eta).prev_sample
|
|
|
|
result_sum = torch.sum(torch.abs(sample))
|
|
result_mean = torch.mean(torch.abs(sample))
|
|
|
|
assert abs(result_sum.item() - 354.5418) < 1e-2, f" expected result sum 218.4379, but get {result_sum}"
|
|
assert abs(result_mean.item() - 0.4616) < 1e-3, f" expected result mean 0.2844, but get {result_mean}"
|