mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
245 lines
8.1 KiB
Python
245 lines
8.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
|
|
|
|
from diffusers import DDPMWuerstchenScheduler, StableCascadeCombinedPipeline
|
|
from diffusers.models import StableCascadeUNet
|
|
from diffusers.pipelines.wuerstchen import PaellaVQModel
|
|
|
|
from ...testing_utils import enable_full_determinism, require_torch_accelerator, torch_device
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableCascadeCombinedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = StableCascadeCombinedPipeline
|
|
params = ["prompt"]
|
|
batch_params = ["prompt", "negative_prompt"]
|
|
required_optional_params = [
|
|
"generator",
|
|
"height",
|
|
"width",
|
|
"latents",
|
|
"prior_guidance_scale",
|
|
"decoder_guidance_scale",
|
|
"negative_prompt",
|
|
"num_inference_steps",
|
|
"return_dict",
|
|
"prior_num_inference_steps",
|
|
"output_type",
|
|
]
|
|
test_xformers_attention = True
|
|
|
|
@property
|
|
def text_embedder_hidden_size(self):
|
|
return 32
|
|
|
|
@property
|
|
def dummy_prior(self):
|
|
torch.manual_seed(0)
|
|
|
|
model_kwargs = {
|
|
"conditioning_dim": 128,
|
|
"block_out_channels": (128, 128),
|
|
"num_attention_heads": (2, 2),
|
|
"down_num_layers_per_block": (1, 1),
|
|
"up_num_layers_per_block": (1, 1),
|
|
"clip_image_in_channels": 768,
|
|
"switch_level": (False,),
|
|
"clip_text_in_channels": self.text_embedder_hidden_size,
|
|
"clip_text_pooled_in_channels": self.text_embedder_hidden_size,
|
|
}
|
|
|
|
model = StableCascadeUNet(**model_kwargs)
|
|
return model.eval()
|
|
|
|
@property
|
|
def dummy_tokenizer(self):
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
return tokenizer
|
|
|
|
@property
|
|
def dummy_text_encoder(self):
|
|
torch.manual_seed(0)
|
|
config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
projection_dim=self.text_embedder_hidden_size,
|
|
hidden_size=self.text_embedder_hidden_size,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
return CLIPTextModelWithProjection(config).eval()
|
|
|
|
@property
|
|
def dummy_vqgan(self):
|
|
torch.manual_seed(0)
|
|
|
|
model_kwargs = {
|
|
"bottleneck_blocks": 1,
|
|
"num_vq_embeddings": 2,
|
|
}
|
|
model = PaellaVQModel(**model_kwargs)
|
|
return model.eval()
|
|
|
|
@property
|
|
def dummy_decoder(self):
|
|
torch.manual_seed(0)
|
|
model_kwargs = {
|
|
"in_channels": 4,
|
|
"out_channels": 4,
|
|
"conditioning_dim": 128,
|
|
"block_out_channels": (16, 32, 64, 128),
|
|
"num_attention_heads": (-1, -1, 1, 2),
|
|
"down_num_layers_per_block": (1, 1, 1, 1),
|
|
"up_num_layers_per_block": (1, 1, 1, 1),
|
|
"down_blocks_repeat_mappers": (1, 1, 1, 1),
|
|
"up_blocks_repeat_mappers": (3, 3, 2, 2),
|
|
"block_types_per_layer": (
|
|
("SDCascadeResBlock", "SDCascadeTimestepBlock"),
|
|
("SDCascadeResBlock", "SDCascadeTimestepBlock"),
|
|
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
|
|
("SDCascadeResBlock", "SDCascadeTimestepBlock", "SDCascadeAttnBlock"),
|
|
),
|
|
"switch_level": None,
|
|
"clip_text_pooled_in_channels": 32,
|
|
"dropout": (0.1, 0.1, 0.1, 0.1),
|
|
}
|
|
|
|
model = StableCascadeUNet(**model_kwargs)
|
|
return model.eval()
|
|
|
|
def get_dummy_components(self):
|
|
prior = self.dummy_prior
|
|
|
|
scheduler = DDPMWuerstchenScheduler()
|
|
tokenizer = self.dummy_tokenizer
|
|
text_encoder = self.dummy_text_encoder
|
|
decoder = self.dummy_decoder
|
|
vqgan = self.dummy_vqgan
|
|
prior_text_encoder = self.dummy_text_encoder
|
|
prior_tokenizer = self.dummy_tokenizer
|
|
|
|
components = {
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"decoder": decoder,
|
|
"scheduler": scheduler,
|
|
"vqgan": vqgan,
|
|
"prior_text_encoder": prior_text_encoder,
|
|
"prior_tokenizer": prior_tokenizer,
|
|
"prior_prior": prior,
|
|
"prior_scheduler": scheduler,
|
|
"prior_feature_extractor": None,
|
|
"prior_image_encoder": None,
|
|
}
|
|
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "horse",
|
|
"generator": generator,
|
|
"prior_guidance_scale": 4.0,
|
|
"decoder_guidance_scale": 4.0,
|
|
"num_inference_steps": 2,
|
|
"prior_num_inference_steps": 2,
|
|
"output_type": "np",
|
|
"height": 128,
|
|
"width": 128,
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_cascade(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
output = pipe(**self.get_dummy_inputs(device))
|
|
image = output.images
|
|
|
|
image_from_tuple = pipe(**self.get_dummy_inputs(device), return_dict=False)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[-3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 128, 128, 3)
|
|
|
|
expected_slice = np.array([0.0, 1.0, 0.0, 1.0, 1.0, 0.0, 1.0, 1.0, 0.0])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
|
|
f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
|
|
)
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2, (
|
|
f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
|
|
)
|
|
|
|
@require_torch_accelerator
|
|
def test_offloads(self):
|
|
pipes = []
|
|
components = self.get_dummy_components()
|
|
sd_pipe = self.pipeline_class(**components).to(torch_device)
|
|
pipes.append(sd_pipe)
|
|
|
|
components = self.get_dummy_components()
|
|
sd_pipe = self.pipeline_class(**components)
|
|
sd_pipe.enable_sequential_cpu_offload(device=torch_device)
|
|
pipes.append(sd_pipe)
|
|
|
|
components = self.get_dummy_components()
|
|
sd_pipe = self.pipeline_class(**components)
|
|
sd_pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipes.append(sd_pipe)
|
|
|
|
image_slices = []
|
|
for pipe in pipes:
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
image = pipe(**inputs).images
|
|
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
|
assert np.abs(image_slices[0] - image_slices[2]).max() < 1e-3
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=2e-2)
|
|
|
|
@unittest.skip(reason="fp16 not supported")
|
|
def test_float16_inference(self):
|
|
super().test_float16_inference()
|
|
|
|
@unittest.skip(reason="no callback test for combined pipeline")
|
|
def test_callback_inputs(self):
|
|
super().test_callback_inputs()
|