mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
268 lines
7.9 KiB
Python
268 lines
7.9 KiB
Python
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
|
|
|
|
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
|
|
from diffusers.pipelines.shap_e import ShapERenderer
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
load_numpy,
|
|
nightly,
|
|
require_torch_accelerator,
|
|
torch_device,
|
|
)
|
|
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
|
|
|
|
|
|
class ShapEPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = ShapEPipeline
|
|
params = ["prompt"]
|
|
batch_params = ["prompt"]
|
|
required_optional_params = [
|
|
"num_images_per_prompt",
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"guidance_scale",
|
|
"frame_size",
|
|
"output_type",
|
|
"return_dict",
|
|
]
|
|
test_xformers_attention = False
|
|
|
|
@property
|
|
def text_embedder_hidden_size(self):
|
|
return 16
|
|
|
|
@property
|
|
def time_input_dim(self):
|
|
return 16
|
|
|
|
@property
|
|
def time_embed_dim(self):
|
|
return self.time_input_dim * 4
|
|
|
|
@property
|
|
def renderer_dim(self):
|
|
return 8
|
|
|
|
@property
|
|
def dummy_tokenizer(self):
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
return tokenizer
|
|
|
|
@property
|
|
def dummy_text_encoder(self):
|
|
torch.manual_seed(0)
|
|
config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=self.text_embedder_hidden_size,
|
|
projection_dim=self.text_embedder_hidden_size,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
return CLIPTextModelWithProjection(config)
|
|
|
|
@property
|
|
def dummy_prior(self):
|
|
torch.manual_seed(0)
|
|
|
|
model_kwargs = {
|
|
"num_attention_heads": 2,
|
|
"attention_head_dim": 16,
|
|
"embedding_dim": self.time_input_dim,
|
|
"num_embeddings": 32,
|
|
"embedding_proj_dim": self.text_embedder_hidden_size,
|
|
"time_embed_dim": self.time_embed_dim,
|
|
"num_layers": 1,
|
|
"clip_embed_dim": self.time_input_dim * 2,
|
|
"additional_embeddings": 0,
|
|
"time_embed_act_fn": "gelu",
|
|
"norm_in_type": "layer",
|
|
"encoder_hid_proj_type": None,
|
|
"added_emb_type": None,
|
|
}
|
|
|
|
model = PriorTransformer(**model_kwargs)
|
|
return model
|
|
|
|
@property
|
|
def dummy_renderer(self):
|
|
torch.manual_seed(0)
|
|
|
|
model_kwargs = {
|
|
"param_shapes": (
|
|
(self.renderer_dim, 93),
|
|
(self.renderer_dim, 8),
|
|
(self.renderer_dim, 8),
|
|
(self.renderer_dim, 8),
|
|
),
|
|
"d_latent": self.time_input_dim,
|
|
"d_hidden": self.renderer_dim,
|
|
"n_output": 12,
|
|
"background": (
|
|
0.1,
|
|
0.1,
|
|
0.1,
|
|
),
|
|
}
|
|
model = ShapERenderer(**model_kwargs)
|
|
return model
|
|
|
|
def get_dummy_components(self):
|
|
prior = self.dummy_prior
|
|
text_encoder = self.dummy_text_encoder
|
|
tokenizer = self.dummy_tokenizer
|
|
shap_e_renderer = self.dummy_renderer
|
|
|
|
scheduler = HeunDiscreteScheduler(
|
|
beta_schedule="exp",
|
|
num_train_timesteps=1024,
|
|
prediction_type="sample",
|
|
use_karras_sigmas=True,
|
|
clip_sample=True,
|
|
clip_sample_range=1.0,
|
|
)
|
|
components = {
|
|
"prior": prior,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"shap_e_renderer": shap_e_renderer,
|
|
"scheduler": scheduler,
|
|
}
|
|
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "horse",
|
|
"generator": generator,
|
|
"num_inference_steps": 1,
|
|
"frame_size": 32,
|
|
"output_type": "latent",
|
|
}
|
|
return inputs
|
|
|
|
def test_shap_e(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
output = pipe(**self.get_dummy_inputs(device))
|
|
image = output.images[0]
|
|
image = image.cpu().numpy()
|
|
image_slice = image[-3:, -3:]
|
|
|
|
assert image.shape == (32, 16)
|
|
|
|
expected_slice = np.array([-1.0000, -0.6559, 1.0000, -0.9096, -0.7252, 0.8211, -0.7647, -0.3308, 0.6462])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_inference_batch_consistent(self):
|
|
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
|
|
self._test_inference_batch_consistent(batch_sizes=[1, 2])
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(batch_size=2, expected_max_diff=6e-3)
|
|
|
|
def test_num_images_per_prompt(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
batch_size = 1
|
|
num_images_per_prompt = 2
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
for key in inputs.keys():
|
|
if key in self.batch_params:
|
|
inputs[key] = batch_size * [inputs[key]]
|
|
|
|
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
|
|
|
|
assert images.shape[0] == batch_size * num_images_per_prompt
|
|
|
|
def test_float16_inference(self):
|
|
super().test_float16_inference(expected_max_diff=5e-1)
|
|
|
|
def test_save_load_local(self):
|
|
super().test_save_load_local(expected_max_difference=5e-3)
|
|
|
|
@unittest.skip("Key error is raised with accelerate")
|
|
def test_sequential_cpu_offload_forward_pass(self):
|
|
pass
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
class ShapEPipelineIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_shap_e(self):
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/shap_e/test_shap_e_np_out.npy"
|
|
)
|
|
pipe = ShapEPipeline.from_pretrained("openai/shap-e")
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
|
|
images = pipe(
|
|
"a shark",
|
|
generator=generator,
|
|
guidance_scale=15.0,
|
|
num_inference_steps=64,
|
|
frame_size=64,
|
|
output_type="np",
|
|
).images[0]
|
|
|
|
assert images.shape == (20, 64, 64, 3)
|
|
|
|
assert_mean_pixel_difference(images, expected_image)
|