mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
374 lines
13 KiB
Python
374 lines
13 KiB
Python
# Copyright 2025 The HuggingFace Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import inspect
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import Gemma2Config, Gemma2Model, GemmaTokenizer
|
|
|
|
from diffusers import AutoencoderDC, FlowMatchEulerDiscreteScheduler, SanaPipeline, SanaTransformer2DModel
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin, to_np
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class SanaPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = SanaPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"return_dict",
|
|
"callback_on_step_end",
|
|
"callback_on_step_end_tensor_inputs",
|
|
]
|
|
)
|
|
test_xformers_attention = False
|
|
test_layerwise_casting = True
|
|
test_group_offloading = True
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = SanaTransformer2DModel(
|
|
patch_size=1,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
num_layers=1,
|
|
num_attention_heads=2,
|
|
attention_head_dim=4,
|
|
num_cross_attention_heads=2,
|
|
cross_attention_head_dim=4,
|
|
cross_attention_dim=8,
|
|
caption_channels=8,
|
|
sample_size=32,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderDC(
|
|
in_channels=3,
|
|
latent_channels=4,
|
|
attention_head_dim=2,
|
|
encoder_block_types=(
|
|
"ResBlock",
|
|
"EfficientViTBlock",
|
|
),
|
|
decoder_block_types=(
|
|
"ResBlock",
|
|
"EfficientViTBlock",
|
|
),
|
|
encoder_block_out_channels=(8, 8),
|
|
decoder_block_out_channels=(8, 8),
|
|
encoder_qkv_multiscales=((), (5,)),
|
|
decoder_qkv_multiscales=((), (5,)),
|
|
encoder_layers_per_block=(1, 1),
|
|
decoder_layers_per_block=[1, 1],
|
|
downsample_block_type="conv",
|
|
upsample_block_type="interpolate",
|
|
decoder_norm_types="rms_norm",
|
|
decoder_act_fns="silu",
|
|
scaling_factor=0.41407,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = FlowMatchEulerDiscreteScheduler(shift=7.0)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_config = Gemma2Config(
|
|
head_dim=16,
|
|
hidden_size=8,
|
|
initializer_range=0.02,
|
|
intermediate_size=64,
|
|
max_position_embeddings=8192,
|
|
model_type="gemma2",
|
|
num_attention_heads=2,
|
|
num_hidden_layers=1,
|
|
num_key_value_heads=2,
|
|
vocab_size=8,
|
|
attn_implementation="eager",
|
|
)
|
|
text_encoder = Gemma2Model(text_encoder_config)
|
|
tokenizer = GemmaTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")
|
|
|
|
components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "",
|
|
"negative_prompt": "",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"height": 32,
|
|
"width": 32,
|
|
"max_sequence_length": 16,
|
|
"output_type": "pt",
|
|
"complex_human_instruction": None,
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe(**inputs)[0]
|
|
generated_image = image[0]
|
|
|
|
self.assertEqual(generated_image.shape, (3, 32, 32))
|
|
expected_image = torch.randn(3, 32, 32)
|
|
max_diff = np.abs(generated_image - expected_image).max()
|
|
self.assertLessEqual(max_diff, 1e10)
|
|
|
|
def test_callback_inputs(self):
|
|
sig = inspect.signature(self.pipeline_class.__call__)
|
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
|
|
has_callback_step_end = "callback_on_step_end" in sig.parameters
|
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end):
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
self.assertTrue(
|
|
hasattr(pipe, "_callback_tensor_inputs"),
|
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
|
|
)
|
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs):
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs):
|
|
for tensor_name in pipe._callback_tensor_inputs:
|
|
assert tensor_name in callback_kwargs
|
|
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
# Test passing in a subset
|
|
inputs["callback_on_step_end"] = callback_inputs_subset
|
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
|
|
output = pipe(**inputs)[0]
|
|
|
|
# Test passing in a everything
|
|
inputs["callback_on_step_end"] = callback_inputs_all
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
|
|
is_last = i == (pipe.num_timesteps - 1)
|
|
if is_last:
|
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
|
|
return callback_kwargs
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
assert output.abs().sum() < 1e10
|
|
|
|
def test_attention_slicing_forward_pass(
|
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
|
|
):
|
|
if not self.test_attention_slicing:
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_without_slicing = pipe(**inputs)[0]
|
|
|
|
pipe.enable_attention_slicing(slice_size=1)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_slicing1 = pipe(**inputs)[0]
|
|
|
|
pipe.enable_attention_slicing(slice_size=2)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_slicing2 = pipe(**inputs)[0]
|
|
|
|
if test_max_difference:
|
|
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
|
|
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
|
|
self.assertLess(
|
|
max(max_diff1, max_diff2),
|
|
expected_max_diff,
|
|
"Attention slicing should not affect the inference results",
|
|
)
|
|
|
|
def test_vae_tiling(self, expected_diff_max: float = 0.2):
|
|
generator_device = "cpu"
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to("cpu")
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# Without tiling
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_without_tiling = pipe(**inputs)[0]
|
|
|
|
# With tiling
|
|
pipe.vae.enable_tiling(
|
|
tile_sample_min_height=96,
|
|
tile_sample_min_width=96,
|
|
tile_sample_stride_height=64,
|
|
tile_sample_stride_width=64,
|
|
)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_with_tiling = pipe(**inputs)[0]
|
|
|
|
self.assertLess(
|
|
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
|
|
expected_diff_max,
|
|
"VAE tiling should not affect the inference results",
|
|
)
|
|
|
|
# TODO(aryan): Create a dummy gemma model with smol vocab size
|
|
@unittest.skip(
|
|
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
|
|
)
|
|
def test_inference_batch_consistent(self):
|
|
pass
|
|
|
|
@unittest.skip(
|
|
"A very small vocab size is used for fast tests. So, any kind of prompt other than the empty default used in other tests will lead to a embedding lookup error. This test uses a long prompt that causes the error."
|
|
)
|
|
def test_inference_batch_single_identical(self):
|
|
pass
|
|
|
|
def test_float16_inference(self):
|
|
# Requires higher tolerance as model seems very sensitive to dtype
|
|
super().test_float16_inference(expected_max_diff=0.08)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class SanaPipelineIntegrationTests(unittest.TestCase):
|
|
prompt = "A painting of a squirrel eating a burger."
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_sana_1024(self):
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
|
|
pipe = SanaPipeline.from_pretrained(
|
|
"Efficient-Large-Model/Sana_1600M_1024px_diffusers", torch_dtype=torch.float16
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
|
|
image = pipe(
|
|
prompt=self.prompt,
|
|
height=1024,
|
|
width=1024,
|
|
generator=generator,
|
|
num_inference_steps=20,
|
|
output_type="np",
|
|
).images[0]
|
|
|
|
image = image.flatten()
|
|
output_slice = np.concatenate((image[:16], image[-16:]))
|
|
|
|
# fmt: off
|
|
expected_slice = np.array([0.0427, 0.0789, 0.0662, 0.0464, 0.082, 0.0574, 0.0535, 0.0886, 0.0647, 0.0549, 0.0872, 0.0605, 0.0593, 0.0942, 0.0674, 0.0581, 0.0076, 0.0168, 0.0027, 0.0063, 0.0159, 0.0, 0.0071, 0.0198, 0.0034, 0.0105, 0.0212, 0.0, 0.0, 0.0166, 0.0042, 0.0125])
|
|
# fmt: on
|
|
|
|
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-4))
|
|
|
|
def test_sana_512(self):
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
|
|
pipe = SanaPipeline.from_pretrained(
|
|
"Efficient-Large-Model/Sana_1600M_512px_diffusers", torch_dtype=torch.float16
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
|
|
image = pipe(
|
|
prompt=self.prompt,
|
|
height=512,
|
|
width=512,
|
|
generator=generator,
|
|
num_inference_steps=20,
|
|
output_type="np",
|
|
).images[0]
|
|
|
|
image = image.flatten()
|
|
output_slice = np.concatenate((image[:16], image[-16:]))
|
|
|
|
# fmt: off
|
|
expected_slice = np.array([0.0803, 0.0774, 0.1108, 0.0872, 0.093, 0.1118, 0.0952, 0.0898, 0.1038, 0.0818, 0.0754, 0.0894, 0.074, 0.0691, 0.0906, 0.0671, 0.0154, 0.0254, 0.0203, 0.0178, 0.0283, 0.0193, 0.0215, 0.0273, 0.0188, 0.0212, 0.0273, 0.0151, 0.0061, 0.0244, 0.0212, 0.0259])
|
|
# fmt: on
|
|
|
|
self.assertTrue(np.allclose(output_slice, expected_slice, atol=1e-4))
|