mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
264 lines
9.9 KiB
Python
264 lines
9.9 KiB
Python
import inspect
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
SD3Transformer2DModel,
|
|
StableDiffusion3PAGPipeline,
|
|
StableDiffusion3Pipeline,
|
|
)
|
|
|
|
from ...testing_utils import (
|
|
torch_device,
|
|
)
|
|
from ..test_pipelines_common import (
|
|
PipelineTesterMixin,
|
|
check_qkv_fusion_matches_attn_procs_length,
|
|
check_qkv_fusion_processors_exist,
|
|
)
|
|
|
|
|
|
class StableDiffusion3PAGPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
|
pipeline_class = StableDiffusion3PAGPipeline
|
|
params = frozenset(
|
|
[
|
|
"prompt",
|
|
"height",
|
|
"width",
|
|
"guidance_scale",
|
|
"negative_prompt",
|
|
"prompt_embeds",
|
|
"negative_prompt_embeds",
|
|
]
|
|
)
|
|
batch_params = frozenset(["prompt", "negative_prompt"])
|
|
test_xformers_attention = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = SD3Transformer2DModel(
|
|
sample_size=32,
|
|
patch_size=1,
|
|
in_channels=4,
|
|
num_layers=2,
|
|
attention_head_dim=8,
|
|
num_attention_heads=4,
|
|
caption_projection_dim=32,
|
|
joint_attention_dim=32,
|
|
pooled_projection_dim=64,
|
|
out_channels=4,
|
|
)
|
|
clip_text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
hidden_act="gelu",
|
|
projection_dim=32,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
block_out_channels=(4,),
|
|
layers_per_block=1,
|
|
latent_channels=4,
|
|
norm_num_groups=1,
|
|
use_quant_conv=False,
|
|
use_post_quant_conv=False,
|
|
shift_factor=0.0609,
|
|
scaling_factor=1.5035,
|
|
)
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler()
|
|
|
|
return {
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"text_encoder_2": text_encoder_2,
|
|
"text_encoder_3": text_encoder_3,
|
|
"tokenizer": tokenizer,
|
|
"tokenizer_2": tokenizer_2,
|
|
"tokenizer_3": tokenizer_3,
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
}
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device="cpu").manual_seed(seed)
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"output_type": "np",
|
|
"pag_scale": 0.0,
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_3_different_prompts(self):
|
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_same_prompt = pipe(**inputs).images[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["prompt_2"] = "a different prompt"
|
|
inputs["prompt_3"] = "another different prompt"
|
|
output_different_prompts = pipe(**inputs).images[0]
|
|
|
|
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
|
|
|
|
# Outputs should be different here
|
|
assert max_diff > 1e-2
|
|
|
|
def test_stable_diffusion_3_different_negative_prompts(self):
|
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_same_prompt = pipe(**inputs).images[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["negative_prompt_2"] = "deformed"
|
|
inputs["negative_prompt_3"] = "blurry"
|
|
output_different_prompts = pipe(**inputs).images[0]
|
|
|
|
max_diff = np.abs(output_same_prompt - output_different_prompts).max()
|
|
|
|
# Outputs should be different here
|
|
assert max_diff > 1e-2
|
|
|
|
def test_fused_qkv_projections(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe(**inputs).images
|
|
original_image_slice = image[0, -3:, -3:, -1]
|
|
|
|
# TODO (sayakpaul): will refactor this once `fuse_qkv_projections()` has been added
|
|
# to the pipeline level.
|
|
pipe.transformer.fuse_qkv_projections()
|
|
assert check_qkv_fusion_processors_exist(pipe.transformer), (
|
|
"Something wrong with the fused attention processors. Expected all the attention processors to be fused."
|
|
)
|
|
assert check_qkv_fusion_matches_attn_procs_length(
|
|
pipe.transformer, pipe.transformer.original_attn_processors
|
|
), "Something wrong with the attention processors concerning the fused QKV projections."
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe(**inputs).images
|
|
image_slice_fused = image[0, -3:, -3:, -1]
|
|
|
|
pipe.transformer.unfuse_qkv_projections()
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe(**inputs).images
|
|
image_slice_disabled = image[0, -3:, -3:, -1]
|
|
|
|
assert np.allclose(original_image_slice, image_slice_fused, atol=1e-3, rtol=1e-3), (
|
|
"Fusion of QKV projections shouldn't affect the outputs."
|
|
)
|
|
assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-3, rtol=1e-3), (
|
|
"Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
|
|
)
|
|
assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), (
|
|
"Original outputs should match when fused QKV projections are disabled."
|
|
)
|
|
|
|
def test_pag_disable_enable(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
|
|
# base pipeline (expect same output when pag is disabled)
|
|
pipe_sd = StableDiffusion3Pipeline(**components)
|
|
pipe_sd = pipe_sd.to(device)
|
|
pipe_sd.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
del inputs["pag_scale"]
|
|
assert "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters, (
|
|
f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
|
|
)
|
|
out = pipe_sd(**inputs).images[0, -3:, -3:, -1]
|
|
|
|
components = self.get_dummy_components()
|
|
|
|
# pag disabled with pag_scale=0.0
|
|
pipe_pag = self.pipeline_class(**components)
|
|
pipe_pag = pipe_pag.to(device)
|
|
pipe_pag.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["pag_scale"] = 0.0
|
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
|
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
|
|
|
|
def test_pag_applied_layers(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
|
|
# base pipeline
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
all_self_attn_layers = [k for k in pipe.transformer.attn_processors.keys() if "attn" in k]
|
|
original_attn_procs = pipe.transformer.attn_processors
|
|
pag_layers = ["blocks.0", "blocks.1"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers)
|
|
|
|
# blocks.0
|
|
block_0_self_attn = ["transformer_blocks.0.attn.processor"]
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["blocks.0"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert set(pipe.pag_attn_processors) == set(block_0_self_attn)
|
|
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["blocks.0.attn"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert set(pipe.pag_attn_processors) == set(block_0_self_attn)
|
|
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["blocks.(0|1)"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert (len(pipe.pag_attn_processors)) == 2
|
|
|
|
pipe.transformer.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["blocks.0", r"blocks\.1"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert len(pipe.pag_attn_processors) == 2
|