mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
351 lines
14 KiB
Python
351 lines
14 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import inspect
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
AutoPipelineForText2Image,
|
|
DDIMScheduler,
|
|
StableDiffusionPAGPipeline,
|
|
StableDiffusionPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import (
|
|
TEXT_TO_IMAGE_BATCH_PARAMS,
|
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
|
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
|
TEXT_TO_IMAGE_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import (
|
|
IPAdapterTesterMixin,
|
|
PipelineFromPipeTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineTesterMixin,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusionPAGPipelineFastTests(
|
|
PipelineTesterMixin,
|
|
IPAdapterTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineFromPipeTesterMixin,
|
|
unittest.TestCase,
|
|
):
|
|
pipeline_class = StableDiffusionPAGPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"})
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"})
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None):
|
|
cross_attention_dim = 8
|
|
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
time_cond_proj_dim=time_cond_proj_dim,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=cross_attention_dim,
|
|
norm_num_groups=2,
|
|
)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[4, 8],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
norm_num_groups=2,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=cross_attention_dim,
|
|
intermediate_size=16,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=2,
|
|
num_hidden_layers=2,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"pag_scale": 0.9,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_pag_disable_enable(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
|
|
# base pipeline (expect same output when pag is disabled)
|
|
pipe_sd = StableDiffusionPipeline(**components)
|
|
pipe_sd = pipe_sd.to(device)
|
|
pipe_sd.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
del inputs["pag_scale"]
|
|
assert "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters, (
|
|
f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
|
|
)
|
|
out = pipe_sd(**inputs).images[0, -3:, -3:, -1]
|
|
|
|
# pag disabled with pag_scale=0.0
|
|
pipe_pag = self.pipeline_class(**components)
|
|
pipe_pag = pipe_pag.to(device)
|
|
pipe_pag.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["pag_scale"] = 0.0
|
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
|
|
|
|
# pag enabled
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
|
|
pipe_pag = pipe_pag.to(device)
|
|
pipe_pag.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
|
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
|
|
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3
|
|
|
|
def test_pag_applied_layers(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
|
|
# base pipeline
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# pag_applied_layers = ["mid","up","down"] should apply to all self-attention layers
|
|
all_self_attn_layers = [k for k in pipe.unet.attn_processors.keys() if "attn1" in k]
|
|
original_attn_procs = pipe.unet.attn_processors
|
|
pag_layers = [
|
|
"down",
|
|
"mid",
|
|
"up",
|
|
]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_layers)
|
|
|
|
# pag_applied_layers = ["mid"], or ["mid.block_0"] or ["mid.block_0.attentions_0"] should apply to all self-attention layers in mid_block, i.e.
|
|
# mid_block.attentions.0.transformer_blocks.0.attn1.processor
|
|
# mid_block.attentions.0.transformer_blocks.1.attn1.processor
|
|
all_self_attn_mid_layers = [
|
|
"mid_block.attentions.0.transformer_blocks.0.attn1.processor",
|
|
# "mid_block.attentions.0.transformer_blocks.1.attn1.processor",
|
|
]
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["mid"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["mid_block"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["mid_block.attentions.0"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert set(pipe.pag_attn_processors) == set(all_self_attn_mid_layers)
|
|
|
|
# pag_applied_layers = ["mid.block_0.attentions_1"] does not exist in the model
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["mid_block.attentions.1"]
|
|
with self.assertRaises(ValueError):
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
|
|
# pag_applied_layers = "down" should apply to all self-attention layers in down_blocks
|
|
# down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor
|
|
# down_blocks.1.attentions.0.transformer_blocks.1.attn1.processor
|
|
# down_blocks.1.attentions.0.transformer_blocks.0.attn1.processor
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["down"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert len(pipe.pag_attn_processors) == 2
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["down_blocks.0"]
|
|
with self.assertRaises(ValueError):
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["down_blocks.1"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert len(pipe.pag_attn_processors) == 2
|
|
|
|
pipe.unet.set_attn_processor(original_attn_procs.copy())
|
|
pag_layers = ["down_blocks.1.attentions.1"]
|
|
pipe._set_pag_attn_processor(pag_applied_layers=pag_layers, do_classifier_free_guidance=False)
|
|
assert len(pipe.pag_attn_processors) == 1
|
|
|
|
def test_pag_inference(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
|
|
pipe_pag = pipe_pag.to(device)
|
|
pipe_pag.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe_pag(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (
|
|
1,
|
|
64,
|
|
64,
|
|
3,
|
|
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
|
|
|
|
expected_slice = np.array(
|
|
[0.22802538, 0.44626093, 0.48905736, 0.29633686, 0.36400637, 0.4724258, 0.4678891, 0.32260418, 0.41611585]
|
|
)
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
|
self.assertLessEqual(max_diff, 1e-3)
|
|
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
extra_required_param_value_dict = {
|
|
"device": torch.device(torch_device).type,
|
|
"do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
|
|
}
|
|
return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class StableDiffusionPAGPipelineIntegrationTests(unittest.TestCase):
|
|
pipeline_class = StableDiffusionPAGPipeline
|
|
repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, generator_device="cpu", seed=1, guidance_scale=7.0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "a polar bear sitting in a chair drinking a milkshake",
|
|
"negative_prompt": "deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": guidance_scale,
|
|
"pag_scale": 3.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_pag_cfg(self):
|
|
pipeline = AutoPipelineForText2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16)
|
|
pipeline.enable_model_cpu_offload(device=torch_device)
|
|
pipeline.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
image = pipeline(**inputs).images
|
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
expected_slice = np.array(
|
|
[0.58251953, 0.5722656, 0.5683594, 0.55029297, 0.52001953, 0.52001953, 0.49951172, 0.45410156, 0.50146484]
|
|
)
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3, (
|
|
f"output is different from expected, {image_slice.flatten()}"
|
|
)
|
|
|
|
def test_pag_uncond(self):
|
|
pipeline = AutoPipelineForText2Image.from_pretrained(self.repo_id, enable_pag=True, torch_dtype=torch.float16)
|
|
pipeline.enable_model_cpu_offload(device=torch_device)
|
|
pipeline.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device, guidance_scale=0.0)
|
|
image = pipeline(**inputs).images
|
|
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array(
|
|
[0.5986328, 0.52441406, 0.3972168, 0.4741211, 0.34985352, 0.22705078, 0.4128418, 0.2866211, 0.31713867]
|
|
)
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3, (
|
|
f"output is different from expected, {image_slice.flatten()}"
|
|
)
|