mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
254 lines
9.1 KiB
Python
254 lines
9.1 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
ControlNetModel,
|
|
DDIMScheduler,
|
|
StableDiffusionControlNetPAGPipeline,
|
|
StableDiffusionControlNetPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
from ...testing_utils import enable_full_determinism, torch_device
|
|
from ..pipeline_params import (
|
|
TEXT_TO_IMAGE_BATCH_PARAMS,
|
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
|
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
|
TEXT_TO_IMAGE_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import (
|
|
IPAdapterTesterMixin,
|
|
PipelineFromPipeTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineTesterMixin,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusionControlNetPAGPipelineFastTests(
|
|
PipelineTesterMixin,
|
|
IPAdapterTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineFromPipeTesterMixin,
|
|
unittest.TestCase,
|
|
):
|
|
pipeline_class = StableDiffusionControlNetPAGPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS.union({"pag_scale", "pag_adaptive_scale"})
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"})
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None):
|
|
# Copied from tests.pipelines.controlnet.test_controlnet_sdxl.StableDiffusionXLControlNetPipelineFastTests.get_dummy_components
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=8,
|
|
time_cond_proj_dim=time_cond_proj_dim,
|
|
norm_num_groups=2,
|
|
)
|
|
torch.manual_seed(0)
|
|
controlnet = ControlNetModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
in_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
conditioning_embedding_out_channels=(2, 4),
|
|
cross_attention_dim=8,
|
|
norm_num_groups=2,
|
|
)
|
|
torch.manual_seed(0)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[4, 8],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
norm_num_groups=2,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=8,
|
|
intermediate_size=16,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=2,
|
|
num_hidden_layers=2,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"controlnet": controlnet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
controlnet_embedder_scale_factor = 2
|
|
image = randn_tensor(
|
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
)
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"pag_scale": 3.0,
|
|
"output_type": "np",
|
|
"image": image,
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_pag_disable_enable(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
|
|
# base pipeline (expect same output when pag is disabled)
|
|
pipe_sd = StableDiffusionControlNetPipeline(**components)
|
|
pipe_sd = pipe_sd.to(device)
|
|
pipe_sd.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
del inputs["pag_scale"]
|
|
assert "pag_scale" not in inspect.signature(pipe_sd.__call__).parameters, (
|
|
f"`pag_scale` should not be a call parameter of the base pipeline {pipe_sd.__class__.__name__}."
|
|
)
|
|
out = pipe_sd(**inputs).images[0, -3:, -3:, -1]
|
|
|
|
# pag disabled with pag_scale=0.0
|
|
pipe_pag = self.pipeline_class(**components)
|
|
pipe_pag = pipe_pag.to(device)
|
|
pipe_pag.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["pag_scale"] = 0.0
|
|
out_pag_disabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
|
|
|
|
# pag enabled
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
|
|
pipe_pag = pipe_pag.to(device)
|
|
pipe_pag.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
out_pag_enabled = pipe_pag(**inputs).images[0, -3:, -3:, -1]
|
|
|
|
assert np.abs(out.flatten() - out_pag_disabled.flatten()).max() < 1e-3
|
|
assert np.abs(out.flatten() - out_pag_enabled.flatten()).max() > 1e-3
|
|
|
|
def test_pag_cfg(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
|
|
pipe_pag = pipe_pag.to(device)
|
|
pipe_pag.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe_pag(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (
|
|
1,
|
|
64,
|
|
64,
|
|
3,
|
|
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
|
|
expected_slice = np.array(
|
|
[0.45505235, 0.2785938, 0.16334778, 0.79689944, 0.53095645, 0.40135607, 0.7052706, 0.69065094, 0.41548574]
|
|
)
|
|
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
|
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"
|
|
|
|
def test_pag_uncond(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
|
|
pipe_pag = self.pipeline_class(**components, pag_applied_layers=["mid", "up", "down"])
|
|
pipe_pag = pipe_pag.to(device)
|
|
pipe_pag.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["guidance_scale"] = 0.0
|
|
image = pipe_pag(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (
|
|
1,
|
|
64,
|
|
64,
|
|
3,
|
|
), f"the shape of the output image should be (1, 64, 64, 3) but got {image.shape}"
|
|
expected_slice = np.array(
|
|
[0.45127502, 0.2797252, 0.15970308, 0.7993157, 0.5414344, 0.40160775, 0.7114598, 0.69803864, 0.4217583]
|
|
)
|
|
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
|
assert max_diff < 1e-3, f"output is different from expected, {image_slice.flatten()}"
|
|
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
extra_required_param_value_dict = {
|
|
"device": torch.device(torch_device).type,
|
|
"do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
|
|
}
|
|
return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)
|