mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
160 lines
5.2 KiB
Python
160 lines
5.2 KiB
Python
# Copyright 2025 The HuggingFace Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import AutoencoderKLLTXVideo, LTXLatentUpsamplePipeline
|
|
from diffusers.pipelines.ltx.modeling_latent_upsampler import LTXLatentUpsamplerModel
|
|
|
|
from ...testing_utils import enable_full_determinism
|
|
from ..test_pipelines_common import PipelineTesterMixin, to_np
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class LTXLatentUpsamplePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = LTXLatentUpsamplePipeline
|
|
params = {"video", "generator"}
|
|
batch_params = {"video", "generator"}
|
|
required_optional_params = frozenset(["generator", "latents", "return_dict"])
|
|
test_xformers_attention = False
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKLLTXVideo(
|
|
in_channels=3,
|
|
out_channels=3,
|
|
latent_channels=8,
|
|
block_out_channels=(8, 8, 8, 8),
|
|
decoder_block_out_channels=(8, 8, 8, 8),
|
|
layers_per_block=(1, 1, 1, 1, 1),
|
|
decoder_layers_per_block=(1, 1, 1, 1, 1),
|
|
spatio_temporal_scaling=(True, True, False, False),
|
|
decoder_spatio_temporal_scaling=(True, True, False, False),
|
|
decoder_inject_noise=(False, False, False, False, False),
|
|
upsample_residual=(False, False, False, False),
|
|
upsample_factor=(1, 1, 1, 1),
|
|
timestep_conditioning=False,
|
|
patch_size=1,
|
|
patch_size_t=1,
|
|
encoder_causal=True,
|
|
decoder_causal=False,
|
|
)
|
|
vae.use_framewise_encoding = False
|
|
vae.use_framewise_decoding = False
|
|
|
|
torch.manual_seed(0)
|
|
latent_upsampler = LTXLatentUpsamplerModel(
|
|
in_channels=8,
|
|
mid_channels=32,
|
|
num_blocks_per_stage=1,
|
|
dims=3,
|
|
spatial_upsample=True,
|
|
temporal_upsample=False,
|
|
)
|
|
|
|
components = {
|
|
"vae": vae,
|
|
"latent_upsampler": latent_upsampler,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
video = torch.randn((5, 3, 32, 32), generator=generator, device=device)
|
|
|
|
inputs = {
|
|
"video": video,
|
|
"generator": generator,
|
|
"height": 16,
|
|
"width": 16,
|
|
"output_type": "pt",
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
video = pipe(**inputs).frames
|
|
generated_video = video[0]
|
|
|
|
self.assertEqual(generated_video.shape, (5, 3, 32, 32))
|
|
expected_video = torch.randn(5, 3, 32, 32)
|
|
max_diff = np.abs(generated_video - expected_video).max()
|
|
self.assertLessEqual(max_diff, 1e10)
|
|
|
|
def test_vae_tiling(self, expected_diff_max: float = 0.25):
|
|
generator_device = "cpu"
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to("cpu")
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# Without tiling
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_without_tiling = pipe(**inputs)[0]
|
|
|
|
# With tiling
|
|
pipe.vae.enable_tiling(
|
|
tile_sample_min_height=96,
|
|
tile_sample_min_width=96,
|
|
tile_sample_stride_height=64,
|
|
tile_sample_stride_width=64,
|
|
)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_with_tiling = pipe(**inputs)[0]
|
|
|
|
self.assertLess(
|
|
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
|
|
expected_diff_max,
|
|
"VAE tiling should not affect the inference results",
|
|
)
|
|
|
|
@unittest.skip("Test is not applicable.")
|
|
def test_callback_inputs(self):
|
|
pass
|
|
|
|
@unittest.skip("Test is not applicable.")
|
|
def test_attention_slicing_forward_pass(
|
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
|
|
):
|
|
pass
|
|
|
|
@unittest.skip("Test is not applicable.")
|
|
def test_inference_batch_consistent(self):
|
|
pass
|
|
|
|
@unittest.skip("Test is not applicable.")
|
|
def test_inference_batch_single_identical(self):
|
|
pass
|