mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
149 lines
5.0 KiB
Python
149 lines
5.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
EulerDiscreteScheduler,
|
|
KolorsPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.pipelines.kolors import ChatGLMModel, ChatGLMTokenizer
|
|
|
|
from ...testing_utils import enable_full_determinism
|
|
from ..pipeline_params import (
|
|
TEXT_TO_IMAGE_BATCH_PARAMS,
|
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
|
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
|
TEXT_TO_IMAGE_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class KolorsPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = KolorsPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"})
|
|
|
|
supports_dduf = False
|
|
test_layerwise_casting = True
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(2, 4),
|
|
layers_per_block=2,
|
|
time_cond_proj_dim=time_cond_proj_dim,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
# specific config below
|
|
attention_head_dim=(2, 4),
|
|
use_linear_projection=True,
|
|
addition_embed_type="text_time",
|
|
addition_time_embed_dim=8,
|
|
transformer_layers_per_block=(1, 2),
|
|
projection_class_embeddings_input_dim=56,
|
|
cross_attention_dim=8,
|
|
norm_num_groups=1,
|
|
)
|
|
scheduler = EulerDiscreteScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
steps_offset=1,
|
|
beta_schedule="scaled_linear",
|
|
timestep_spacing="leading",
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
sample_size=128,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder = ChatGLMModel.from_pretrained(
|
|
"hf-internal-testing/tiny-random-chatglm3-6b", torch_dtype=torch.float32
|
|
)
|
|
tokenizer = ChatGLMTokenizer.from_pretrained("hf-internal-testing/tiny-random-chatglm3-6b")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"image_encoder": None,
|
|
"feature_extractor": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
self.assertEqual(image.shape, (1, 64, 64, 3))
|
|
expected_slice = np.array(
|
|
[0.26413745, 0.4425478, 0.4102801, 0.42693347, 0.52529025, 0.3867405, 0.47512037, 0.41538602, 0.43855375]
|
|
)
|
|
max_diff = np.abs(image_slice.flatten() - expected_slice).max()
|
|
self.assertLessEqual(max_diff, 1e-3)
|
|
|
|
def test_save_load_optional_components(self):
|
|
super().test_save_load_optional_components(expected_max_difference=2e-4)
|
|
|
|
def test_save_load_float16(self):
|
|
super().test_save_load_float16(expected_max_diff=2e-1)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(expected_max_diff=5e-3)
|