mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
242 lines
7.8 KiB
Python
242 lines
7.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import AutoTokenizer, T5EncoderModel
|
|
|
|
from diffusers import (
|
|
AutoPipelineForImage2Image,
|
|
AutoPipelineForText2Image,
|
|
Kandinsky3Pipeline,
|
|
Kandinsky3UNet,
|
|
VQModel,
|
|
)
|
|
from diffusers.image_processor import VaeImageProcessor
|
|
from diffusers.schedulers.scheduling_ddpm import DDPMScheduler
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
load_image,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import (
|
|
TEXT_TO_IMAGE_BATCH_PARAMS,
|
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
|
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
|
TEXT_TO_IMAGE_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class Kandinsky3PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = Kandinsky3Pipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS
|
|
test_xformers_attention = False
|
|
|
|
@property
|
|
def dummy_movq_kwargs(self):
|
|
return {
|
|
"block_out_channels": [32, 64],
|
|
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
|
|
"in_channels": 3,
|
|
"latent_channels": 4,
|
|
"layers_per_block": 1,
|
|
"norm_num_groups": 8,
|
|
"norm_type": "spatial",
|
|
"num_vq_embeddings": 12,
|
|
"out_channels": 3,
|
|
"up_block_types": [
|
|
"AttnUpDecoderBlock2D",
|
|
"UpDecoderBlock2D",
|
|
],
|
|
"vq_embed_dim": 4,
|
|
}
|
|
|
|
@property
|
|
def dummy_movq(self):
|
|
torch.manual_seed(0)
|
|
model = VQModel(**self.dummy_movq_kwargs)
|
|
return model
|
|
|
|
def get_dummy_components(self, time_cond_proj_dim=None):
|
|
torch.manual_seed(0)
|
|
unet = Kandinsky3UNet(
|
|
in_channels=4,
|
|
time_embedding_dim=4,
|
|
groups=2,
|
|
attention_head_dim=4,
|
|
layers_per_block=3,
|
|
block_out_channels=(32, 64),
|
|
cross_attention_dim=4,
|
|
encoder_hid_dim=32,
|
|
)
|
|
scheduler = DDPMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
steps_offset=1,
|
|
beta_schedule="squaredcos_cap_v2",
|
|
clip_sample=True,
|
|
thresholding=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
movq = self.dummy_movq
|
|
torch.manual_seed(0)
|
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"movq": movq,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
"width": 16,
|
|
"height": 16,
|
|
}
|
|
return inputs
|
|
|
|
def test_kandinsky3(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
output = pipe(**self.get_dummy_inputs(device))
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 16, 16, 3)
|
|
|
|
expected_slice = np.array([0.3768, 0.4373, 0.4865, 0.4890, 0.4299, 0.5122, 0.4921, 0.4924, 0.5599])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
|
|
f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
|
|
)
|
|
|
|
def test_float16_inference(self):
|
|
super().test_float16_inference(expected_max_diff=1e-1)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=1e-2)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class Kandinsky3PipelineIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_kandinskyV3(self):
|
|
pipe = AutoPipelineForText2Image.from_pretrained(
|
|
"kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A photograph of the inside of a subway train. There are raccoons sitting on the seats. One of them is reading a newspaper. The window shows the city in the background."
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
|
|
image = pipe(prompt, num_inference_steps=5, generator=generator).images[0]
|
|
|
|
assert image.size == (1024, 1024)
|
|
|
|
expected_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png"
|
|
)
|
|
|
|
image_processor = VaeImageProcessor()
|
|
|
|
image_np = image_processor.pil_to_numpy(image)
|
|
expected_image_np = image_processor.pil_to_numpy(expected_image)
|
|
|
|
self.assertTrue(np.allclose(image_np, expected_image_np, atol=5e-2))
|
|
|
|
def test_kandinskyV3_img2img(self):
|
|
pipe = AutoPipelineForImage2Image.from_pretrained(
|
|
"kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png"
|
|
)
|
|
w, h = 512, 512
|
|
image = image.resize((w, h), resample=Image.BICUBIC, reducing_gap=1)
|
|
prompt = "A painting of the inside of a subway train with tiny raccoons."
|
|
|
|
image = pipe(prompt, image=image, strength=0.75, num_inference_steps=5, generator=generator).images[0]
|
|
|
|
assert image.size == (512, 512)
|
|
|
|
expected_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/i2i.png"
|
|
)
|
|
|
|
image_processor = VaeImageProcessor()
|
|
|
|
image_np = image_processor.pil_to_numpy(image)
|
|
expected_image_np = image_processor.pil_to_numpy(expected_image)
|
|
|
|
self.assertTrue(np.allclose(image_np, expected_image_np, atol=5e-2))
|