mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
280 lines
8.5 KiB
Python
280 lines
8.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import DDIMScheduler, KandinskyV22Pipeline, KandinskyV22PriorPipeline, UNet2DConditionModel, VQModel
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
load_numpy,
|
|
numpy_cosine_similarity_distance,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class Dummies:
|
|
@property
|
|
def text_embedder_hidden_size(self):
|
|
return 32
|
|
|
|
@property
|
|
def time_input_dim(self):
|
|
return 32
|
|
|
|
@property
|
|
def block_out_channels_0(self):
|
|
return self.time_input_dim
|
|
|
|
@property
|
|
def time_embed_dim(self):
|
|
return self.time_input_dim * 4
|
|
|
|
@property
|
|
def cross_attention_dim(self):
|
|
return 32
|
|
|
|
@property
|
|
def dummy_unet(self):
|
|
torch.manual_seed(0)
|
|
|
|
model_kwargs = {
|
|
"in_channels": 4,
|
|
# Out channels is double in channels because predicts mean and variance
|
|
"out_channels": 8,
|
|
"addition_embed_type": "image",
|
|
"down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"),
|
|
"up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"),
|
|
"mid_block_type": "UNetMidBlock2DSimpleCrossAttn",
|
|
"block_out_channels": (self.block_out_channels_0, self.block_out_channels_0 * 2),
|
|
"layers_per_block": 1,
|
|
"encoder_hid_dim": self.text_embedder_hidden_size,
|
|
"encoder_hid_dim_type": "image_proj",
|
|
"cross_attention_dim": self.cross_attention_dim,
|
|
"attention_head_dim": 4,
|
|
"resnet_time_scale_shift": "scale_shift",
|
|
"class_embed_type": None,
|
|
}
|
|
|
|
model = UNet2DConditionModel(**model_kwargs)
|
|
return model
|
|
|
|
@property
|
|
def dummy_movq_kwargs(self):
|
|
return {
|
|
"block_out_channels": [32, 64],
|
|
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
|
|
"in_channels": 3,
|
|
"latent_channels": 4,
|
|
"layers_per_block": 1,
|
|
"norm_num_groups": 8,
|
|
"norm_type": "spatial",
|
|
"num_vq_embeddings": 12,
|
|
"out_channels": 3,
|
|
"up_block_types": [
|
|
"AttnUpDecoderBlock2D",
|
|
"UpDecoderBlock2D",
|
|
],
|
|
"vq_embed_dim": 4,
|
|
}
|
|
|
|
@property
|
|
def dummy_movq(self):
|
|
torch.manual_seed(0)
|
|
model = VQModel(**self.dummy_movq_kwargs)
|
|
return model
|
|
|
|
def get_dummy_components(self):
|
|
unet = self.dummy_unet
|
|
movq = self.dummy_movq
|
|
|
|
scheduler = DDIMScheduler(
|
|
num_train_timesteps=1000,
|
|
beta_schedule="linear",
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
steps_offset=1,
|
|
prediction_type="epsilon",
|
|
thresholding=False,
|
|
)
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"movq": movq,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed)).to(device)
|
|
negative_image_embeds = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1)).to(
|
|
device
|
|
)
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"image_embeds": image_embeds,
|
|
"negative_image_embeds": negative_image_embeds,
|
|
"generator": generator,
|
|
"height": 64,
|
|
"width": 64,
|
|
"guidance_scale": 4.0,
|
|
"num_inference_steps": 2,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
|
|
class KandinskyV22PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = KandinskyV22Pipeline
|
|
params = [
|
|
"image_embeds",
|
|
"negative_image_embeds",
|
|
]
|
|
batch_params = ["image_embeds", "negative_image_embeds"]
|
|
required_optional_params = [
|
|
"generator",
|
|
"height",
|
|
"width",
|
|
"latents",
|
|
"guidance_scale",
|
|
"num_inference_steps",
|
|
"return_dict",
|
|
"guidance_scale",
|
|
"num_images_per_prompt",
|
|
"output_type",
|
|
"return_dict",
|
|
]
|
|
callback_cfg_params = ["image_embds"]
|
|
test_xformers_attention = False
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
dummies = Dummies()
|
|
return dummies.get_dummy_inputs(device=device, seed=seed)
|
|
|
|
def get_dummy_components(self):
|
|
dummies = Dummies()
|
|
return dummies.get_dummy_components()
|
|
|
|
def test_kandinsky(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(device)
|
|
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
output = pipe(**self.get_dummy_inputs(device))
|
|
image = output.images
|
|
|
|
image_from_tuple = pipe(
|
|
**self.get_dummy_inputs(device),
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
expected_slice = np.array([0.3420, 0.9505, 0.3919, 1.0000, 0.5188, 0.3109, 0.6139, 0.5624, 0.6811])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
|
|
f" expected_slice {expected_slice}, but got {image_slice.flatten()}"
|
|
)
|
|
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2, (
|
|
f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}"
|
|
)
|
|
|
|
def test_float16_inference(self):
|
|
super().test_float16_inference(expected_max_diff=1e-1)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class KandinskyV22PipelineIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_kandinsky_text2img(self):
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy"
|
|
)
|
|
|
|
pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
|
|
"kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
|
|
)
|
|
pipe_prior.enable_model_cpu_offload(device=torch_device)
|
|
|
|
pipeline = KandinskyV22Pipeline.from_pretrained(
|
|
"kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
|
|
)
|
|
pipeline.enable_model_cpu_offload(device=torch_device)
|
|
pipeline.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "red cat, 4k photo"
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
image_emb, zero_image_emb = pipe_prior(
|
|
prompt,
|
|
generator=generator,
|
|
num_inference_steps=3,
|
|
negative_prompt="",
|
|
).to_tuple()
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
output = pipeline(
|
|
image_embeds=image_emb,
|
|
negative_image_embeds=zero_image_emb,
|
|
generator=generator,
|
|
num_inference_steps=3,
|
|
output_type="np",
|
|
)
|
|
image = output.images[0]
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
max_diff = numpy_cosine_similarity_distance(expected_image.flatten(), image.flatten())
|
|
assert max_diff < 1e-4
|