mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
161 lines
5.6 KiB
Python
161 lines
5.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import (
|
|
AutoTokenizer,
|
|
CLIPTextConfig,
|
|
CLIPTextModelWithProjection,
|
|
CLIPTokenizer,
|
|
LlamaForCausalLM,
|
|
T5EncoderModel,
|
|
)
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
HiDreamImagePipeline,
|
|
HiDreamImageTransformer2DModel,
|
|
)
|
|
|
|
from ...testing_utils import enable_full_determinism
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class HiDreamImagePipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = HiDreamImagePipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs", "prompt_embeds", "negative_prompt_embeds"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
|
|
required_optional_params = PipelineTesterMixin.required_optional_params
|
|
test_layerwise_casting = True
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = HiDreamImageTransformer2DModel(
|
|
patch_size=2,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
num_layers=1,
|
|
num_single_layers=1,
|
|
attention_head_dim=8,
|
|
num_attention_heads=4,
|
|
caption_channels=[32, 16],
|
|
text_emb_dim=64,
|
|
num_routed_experts=4,
|
|
num_activated_experts=2,
|
|
axes_dims_rope=(4, 2, 2),
|
|
max_resolution=(32, 32),
|
|
llama_layers=(0, 1),
|
|
).eval()
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(scaling_factor=0.3611, shift_factor=0.1159)
|
|
clip_text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
hidden_act="gelu",
|
|
projection_dim=32,
|
|
max_position_embeddings=128,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_4 = LlamaForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")
|
|
text_encoder_4.generation_config.pad_token_id = 1
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
tokenizer_4 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler()
|
|
|
|
components = {
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"text_encoder_2": text_encoder_2,
|
|
"tokenizer_2": tokenizer_2,
|
|
"text_encoder_3": text_encoder_3,
|
|
"tokenizer_3": tokenizer_3,
|
|
"text_encoder_4": text_encoder_4,
|
|
"tokenizer_4": tokenizer_4,
|
|
"transformer": transformer,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe(**inputs)[0]
|
|
generated_image = image[0]
|
|
self.assertEqual(generated_image.shape, (128, 128, 3))
|
|
|
|
# fmt: off
|
|
expected_slice = np.array([0.4507, 0.5256, 0.4205, 0.5791, 0.4848, 0.4831, 0.4443, 0.5107, 0.6586, 0.3163, 0.7318, 0.5933, 0.6252, 0.5512, 0.5357, 0.5983])
|
|
# fmt: on
|
|
|
|
generated_slice = generated_image.flatten()
|
|
generated_slice = np.concatenate([generated_slice[:8], generated_slice[-8:]])
|
|
self.assertTrue(np.allclose(generated_slice, expected_slice, atol=1e-3))
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=3e-4)
|