mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
276 lines
9.0 KiB
Python
276 lines
9.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc and The InstantX Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from huggingface_hub import hf_hub_download
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel, T5TokenizerFast
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
FluxControlNetPipeline,
|
|
FluxTransformer2DModel,
|
|
)
|
|
from diffusers.models import FluxControlNetModel
|
|
from diffusers.utils import load_image
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
nightly,
|
|
numpy_cosine_similarity_distance,
|
|
require_big_accelerator,
|
|
torch_device,
|
|
)
|
|
from ..test_pipelines_common import FluxIPAdapterTesterMixin, PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class FluxControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin, FluxIPAdapterTesterMixin):
|
|
pipeline_class = FluxControlNetPipeline
|
|
|
|
params = frozenset(["prompt", "height", "width", "guidance_scale", "prompt_embeds", "pooled_prompt_embeds"])
|
|
batch_params = frozenset(["prompt"])
|
|
test_layerwise_casting = True
|
|
test_group_offloading = True
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = FluxTransformer2DModel(
|
|
patch_size=1,
|
|
in_channels=16,
|
|
num_layers=1,
|
|
num_single_layers=1,
|
|
attention_head_dim=16,
|
|
num_attention_heads=2,
|
|
joint_attention_dim=32,
|
|
pooled_projection_dim=32,
|
|
axes_dims_rope=[4, 4, 8],
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
controlnet = FluxControlNetModel(
|
|
patch_size=1,
|
|
in_channels=16,
|
|
num_layers=1,
|
|
num_single_layers=1,
|
|
attention_head_dim=16,
|
|
num_attention_heads=2,
|
|
joint_attention_dim=32,
|
|
pooled_projection_dim=32,
|
|
axes_dims_rope=[4, 4, 8],
|
|
)
|
|
|
|
clip_text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
hidden_act="gelu",
|
|
projection_dim=32,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder = CLIPTextModel(clip_text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_2 = T5TokenizerFast.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
block_out_channels=(4,),
|
|
layers_per_block=1,
|
|
latent_channels=4,
|
|
norm_num_groups=1,
|
|
use_quant_conv=False,
|
|
use_post_quant_conv=False,
|
|
shift_factor=0.0609,
|
|
scaling_factor=1.5035,
|
|
)
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler()
|
|
|
|
return {
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"text_encoder_2": text_encoder_2,
|
|
"tokenizer": tokenizer,
|
|
"tokenizer_2": tokenizer_2,
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"controlnet": controlnet,
|
|
"image_encoder": None,
|
|
"feature_extractor": None,
|
|
}
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device="cpu").manual_seed(seed)
|
|
|
|
control_image = randn_tensor(
|
|
(1, 3, 32, 32),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
dtype=torch.float16,
|
|
)
|
|
|
|
controlnet_conditioning_scale = 0.5
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 3.5,
|
|
"output_type": "np",
|
|
"control_image": control_image,
|
|
"controlnet_conditioning_scale": controlnet_conditioning_scale,
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_controlnet_flux(self):
|
|
components = self.get_dummy_components()
|
|
flux_pipe = FluxControlNetPipeline(**components)
|
|
flux_pipe = flux_pipe.to(torch_device, dtype=torch.float16)
|
|
flux_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output = flux_pipe(**inputs)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
expected_slice = np.array(
|
|
[0.47387695, 0.63134766, 0.5605469, 0.61621094, 0.7207031, 0.7089844, 0.70410156, 0.6113281, 0.64160156]
|
|
)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
|
|
f"Expected: {expected_slice}, got: {image_slice.flatten()}"
|
|
)
|
|
|
|
@unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
pass
|
|
|
|
def test_flux_image_output_shape(self):
|
|
pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
height_width_pairs = [(32, 32), (72, 56)]
|
|
for height, width in height_width_pairs:
|
|
expected_height = height - height % (pipe.vae_scale_factor * 2)
|
|
expected_width = width - width % (pipe.vae_scale_factor * 2)
|
|
|
|
inputs.update(
|
|
{
|
|
"control_image": randn_tensor(
|
|
(1, 3, height, width),
|
|
device=torch_device,
|
|
dtype=torch.float16,
|
|
)
|
|
}
|
|
)
|
|
image = pipe(**inputs).images[0]
|
|
output_height, output_width, _ = image.shape
|
|
assert (output_height, output_width) == (expected_height, expected_width)
|
|
|
|
|
|
@nightly
|
|
@require_big_accelerator
|
|
class FluxControlNetPipelineSlowTests(unittest.TestCase):
|
|
pipeline_class = FluxControlNetPipeline
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_canny(self):
|
|
controlnet = FluxControlNetModel.from_pretrained(
|
|
"InstantX/FLUX.1-dev-Controlnet-Canny-alpha", torch_dtype=torch.bfloat16
|
|
)
|
|
pipe = FluxControlNetPipeline.from_pretrained(
|
|
"black-forest-labs/FLUX.1-dev",
|
|
text_encoder=None,
|
|
text_encoder_2=None,
|
|
controlnet=controlnet,
|
|
torch_dtype=torch.bfloat16,
|
|
).to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
control_image = load_image(
|
|
"https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Canny-alpha/resolve/main/canny.jpg"
|
|
).resize((512, 512))
|
|
|
|
prompt_embeds = torch.load(
|
|
hf_hub_download(repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/prompt_embeds.pt")
|
|
).to(torch_device)
|
|
pooled_prompt_embeds = torch.load(
|
|
hf_hub_download(
|
|
repo_id="diffusers/test-slices", repo_type="dataset", filename="flux/pooled_prompt_embeds.pt"
|
|
)
|
|
).to(torch_device)
|
|
|
|
output = pipe(
|
|
prompt_embeds=prompt_embeds,
|
|
pooled_prompt_embeds=pooled_prompt_embeds,
|
|
control_image=control_image,
|
|
controlnet_conditioning_scale=0.6,
|
|
num_inference_steps=2,
|
|
guidance_scale=3.5,
|
|
max_sequence_length=256,
|
|
output_type="np",
|
|
height=512,
|
|
width=512,
|
|
generator=generator,
|
|
)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
original_image = image[-3:, -3:, -1].flatten()
|
|
|
|
expected_image = np.array([0.2734, 0.2852, 0.2852, 0.2734, 0.2754, 0.2891, 0.2617, 0.2637, 0.2773])
|
|
|
|
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
|