mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
363 lines
13 KiB
Python
363 lines
13 KiB
Python
# Copyright 2025 The HuggingFace Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import inspect
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import AutoTokenizer, T5EncoderModel
|
|
|
|
from diffusers import AutoencoderKLCogVideoX, ConsisIDPipeline, ConsisIDTransformer3DModel, DDIMScheduler
|
|
from diffusers.utils import load_image
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
numpy_cosine_similarity_distance,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import (
|
|
PipelineTesterMixin,
|
|
to_np,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class ConsisIDPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = ConsisIDPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS.union({"image"})
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"generator",
|
|
"latents",
|
|
"return_dict",
|
|
"callback_on_step_end",
|
|
"callback_on_step_end_tensor_inputs",
|
|
]
|
|
)
|
|
test_xformers_attention = False
|
|
test_layerwise_casting = True
|
|
test_group_offloading = True
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = ConsisIDTransformer3DModel(
|
|
num_attention_heads=2,
|
|
attention_head_dim=16,
|
|
in_channels=8,
|
|
out_channels=4,
|
|
time_embed_dim=2,
|
|
text_embed_dim=32,
|
|
num_layers=1,
|
|
sample_width=2,
|
|
sample_height=2,
|
|
sample_frames=9,
|
|
patch_size=2,
|
|
temporal_compression_ratio=4,
|
|
max_text_seq_length=16,
|
|
use_rotary_positional_embeddings=True,
|
|
use_learned_positional_embeddings=True,
|
|
cross_attn_interval=1,
|
|
is_kps=False,
|
|
is_train_face=True,
|
|
cross_attn_dim_head=1,
|
|
cross_attn_num_heads=1,
|
|
LFE_id_dim=2,
|
|
LFE_vit_dim=2,
|
|
LFE_depth=5,
|
|
LFE_dim_head=8,
|
|
LFE_num_heads=2,
|
|
LFE_num_id_token=1,
|
|
LFE_num_querie=1,
|
|
LFE_output_dim=21,
|
|
LFE_ff_mult=1,
|
|
LFE_num_scale=1,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKLCogVideoX(
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=(
|
|
"CogVideoXDownBlock3D",
|
|
"CogVideoXDownBlock3D",
|
|
"CogVideoXDownBlock3D",
|
|
"CogVideoXDownBlock3D",
|
|
),
|
|
up_block_types=(
|
|
"CogVideoXUpBlock3D",
|
|
"CogVideoXUpBlock3D",
|
|
"CogVideoXUpBlock3D",
|
|
"CogVideoXUpBlock3D",
|
|
),
|
|
block_out_channels=(8, 8, 8, 8),
|
|
latent_channels=4,
|
|
layers_per_block=1,
|
|
norm_num_groups=2,
|
|
temporal_compression_ratio=4,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = DDIMScheduler()
|
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
components = {
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
image_height = 16
|
|
image_width = 16
|
|
image = Image.new("RGB", (image_width, image_height))
|
|
id_vit_hidden = [torch.ones([1, 2, 2])] * 1
|
|
id_cond = torch.ones(1, 2)
|
|
inputs = {
|
|
"image": image,
|
|
"prompt": "dance monkey",
|
|
"negative_prompt": "",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"height": image_height,
|
|
"width": image_width,
|
|
"num_frames": 8,
|
|
"max_sequence_length": 16,
|
|
"id_vit_hidden": id_vit_hidden,
|
|
"id_cond": id_cond,
|
|
"output_type": "pt",
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
video = pipe(**inputs).frames
|
|
generated_video = video[0]
|
|
|
|
self.assertEqual(generated_video.shape, (8, 3, 16, 16))
|
|
expected_video = torch.randn(8, 3, 16, 16)
|
|
max_diff = np.abs(generated_video - expected_video).max()
|
|
self.assertLessEqual(max_diff, 1e10)
|
|
|
|
def test_callback_inputs(self):
|
|
sig = inspect.signature(self.pipeline_class.__call__)
|
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
|
|
has_callback_step_end = "callback_on_step_end" in sig.parameters
|
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end):
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
self.assertTrue(
|
|
hasattr(pipe, "_callback_tensor_inputs"),
|
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
|
|
)
|
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs):
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs):
|
|
for tensor_name in pipe._callback_tensor_inputs:
|
|
assert tensor_name in callback_kwargs
|
|
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
# Test passing in a subset
|
|
inputs["callback_on_step_end"] = callback_inputs_subset
|
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
|
|
output = pipe(**inputs)[0]
|
|
|
|
# Test passing in a everything
|
|
inputs["callback_on_step_end"] = callback_inputs_all
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
|
|
is_last = i == (pipe.num_timesteps - 1)
|
|
if is_last:
|
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
|
|
return callback_kwargs
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
assert output.abs().sum() < 1e10
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3)
|
|
|
|
def test_attention_slicing_forward_pass(
|
|
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
|
|
):
|
|
if not self.test_attention_slicing:
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator_device = "cpu"
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_without_slicing = pipe(**inputs)[0]
|
|
|
|
pipe.enable_attention_slicing(slice_size=1)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_slicing1 = pipe(**inputs)[0]
|
|
|
|
pipe.enable_attention_slicing(slice_size=2)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
output_with_slicing2 = pipe(**inputs)[0]
|
|
|
|
if test_max_difference:
|
|
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
|
|
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
|
|
self.assertLess(
|
|
max(max_diff1, max_diff2),
|
|
expected_max_diff,
|
|
"Attention slicing should not affect the inference results",
|
|
)
|
|
|
|
def test_vae_tiling(self, expected_diff_max: float = 0.4):
|
|
generator_device = "cpu"
|
|
components = self.get_dummy_components()
|
|
|
|
# The reason to modify it this way is because ConsisID Transformer limits the generation to resolutions used during initialization.
|
|
# This limitation comes from using learned positional embeddings which cannot be generated on-the-fly like sincos or RoPE embeddings.
|
|
# See the if-statement on "self.use_learned_positional_embeddings" in diffusers/models/embeddings.py
|
|
components["transformer"] = ConsisIDTransformer3DModel.from_config(
|
|
components["transformer"].config,
|
|
sample_height=16,
|
|
sample_width=16,
|
|
)
|
|
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to("cpu")
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# Without tiling
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_without_tiling = pipe(**inputs)[0]
|
|
|
|
# With tiling
|
|
pipe.vae.enable_tiling(
|
|
tile_sample_min_height=96,
|
|
tile_sample_min_width=96,
|
|
tile_overlap_factor_height=1 / 12,
|
|
tile_overlap_factor_width=1 / 12,
|
|
)
|
|
inputs = self.get_dummy_inputs(generator_device)
|
|
inputs["height"] = inputs["width"] = 128
|
|
output_with_tiling = pipe(**inputs)[0]
|
|
|
|
self.assertLess(
|
|
(to_np(output_without_tiling) - to_np(output_with_tiling)).max(),
|
|
expected_diff_max,
|
|
"VAE tiling should not affect the inference results",
|
|
)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class ConsisIDPipelineIntegrationTests(unittest.TestCase):
|
|
prompt = "A painting of a squirrel eating a burger."
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_consisid(self):
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
|
|
pipe = ConsisIDPipeline.from_pretrained("BestWishYsh/ConsisID-preview", torch_dtype=torch.bfloat16)
|
|
pipe.enable_model_cpu_offload()
|
|
|
|
prompt = self.prompt
|
|
image = load_image("https://github.com/PKU-YuanGroup/ConsisID/blob/main/asserts/example_images/2.png?raw=true")
|
|
id_vit_hidden = [torch.ones([1, 577, 1024])] * 5
|
|
id_cond = torch.ones(1, 1280)
|
|
|
|
videos = pipe(
|
|
image=image,
|
|
prompt=prompt,
|
|
height=480,
|
|
width=720,
|
|
num_frames=16,
|
|
id_vit_hidden=id_vit_hidden,
|
|
id_cond=id_cond,
|
|
generator=generator,
|
|
num_inference_steps=1,
|
|
output_type="pt",
|
|
).frames
|
|
|
|
video = videos[0]
|
|
expected_video = torch.randn(1, 16, 480, 720, 3).numpy()
|
|
|
|
max_diff = numpy_cosine_similarity_distance(video.cpu(), expected_video)
|
|
assert max_diff < 1e-3, f"Max diff is too high. got {video}"
|