mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
668 lines
24 KiB
Python
668 lines
24 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
from transformers import (
|
|
ClapAudioConfig,
|
|
ClapConfig,
|
|
ClapFeatureExtractor,
|
|
ClapModel,
|
|
ClapTextConfig,
|
|
GPT2Config,
|
|
GPT2LMHeadModel,
|
|
RobertaTokenizer,
|
|
SpeechT5HifiGan,
|
|
SpeechT5HifiGanConfig,
|
|
T5Config,
|
|
T5EncoderModel,
|
|
T5Tokenizer,
|
|
)
|
|
|
|
from diffusers import (
|
|
AudioLDM2Pipeline,
|
|
AudioLDM2ProjectionModel,
|
|
AudioLDM2UNet2DConditionModel,
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
)
|
|
from diffusers.utils import is_transformers_version
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
is_torch_version,
|
|
nightly,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class AudioLDM2PipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = AudioLDM2Pipeline
|
|
params = TEXT_TO_AUDIO_PARAMS
|
|
batch_params = TEXT_TO_AUDIO_BATCH_PARAMS
|
|
required_optional_params = frozenset(
|
|
[
|
|
"num_inference_steps",
|
|
"num_waveforms_per_prompt",
|
|
"generator",
|
|
"latents",
|
|
"output_type",
|
|
"return_dict",
|
|
"callback",
|
|
"callback_steps",
|
|
]
|
|
)
|
|
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = AudioLDM2UNet2DConditionModel(
|
|
block_out_channels=(8, 16),
|
|
layers_per_block=1,
|
|
norm_num_groups=8,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=(8, 16),
|
|
)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[8, 16],
|
|
in_channels=1,
|
|
out_channels=1,
|
|
norm_num_groups=8,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_branch_config = ClapTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=8,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=1,
|
|
num_hidden_layers=1,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
projection_dim=8,
|
|
)
|
|
audio_branch_config = ClapAudioConfig(
|
|
spec_size=8,
|
|
window_size=4,
|
|
num_mel_bins=8,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
depths=[1, 1],
|
|
num_attention_heads=[1, 1],
|
|
num_hidden_layers=1,
|
|
hidden_size=192,
|
|
projection_dim=8,
|
|
patch_size=2,
|
|
patch_stride=2,
|
|
patch_embed_input_channels=4,
|
|
)
|
|
text_encoder_config = ClapConfig.from_text_audio_configs(
|
|
text_config=text_branch_config,
|
|
audio_config=audio_branch_config,
|
|
projection_dim=16,
|
|
)
|
|
text_encoder = ClapModel(text_encoder_config)
|
|
tokenizer = RobertaTokenizer.from_pretrained("hf-internal-testing/tiny-random-roberta", model_max_length=77)
|
|
feature_extractor = ClapFeatureExtractor.from_pretrained(
|
|
"hf-internal-testing/tiny-random-ClapModel", hop_length=7900
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_2_config = T5Config(
|
|
vocab_size=32100,
|
|
d_model=32,
|
|
d_ff=37,
|
|
d_kv=8,
|
|
num_heads=1,
|
|
num_layers=1,
|
|
)
|
|
text_encoder_2 = T5EncoderModel(text_encoder_2_config)
|
|
tokenizer_2 = T5Tokenizer.from_pretrained("hf-internal-testing/tiny-random-T5Model", model_max_length=77)
|
|
|
|
torch.manual_seed(0)
|
|
language_model_config = GPT2Config(
|
|
n_embd=16,
|
|
n_head=1,
|
|
n_layer=1,
|
|
vocab_size=1000,
|
|
n_ctx=99,
|
|
n_positions=99,
|
|
)
|
|
language_model = GPT2LMHeadModel(language_model_config)
|
|
language_model.config.max_new_tokens = 8
|
|
|
|
torch.manual_seed(0)
|
|
projection_model = AudioLDM2ProjectionModel(
|
|
text_encoder_dim=16,
|
|
text_encoder_1_dim=32,
|
|
langauge_model_dim=16,
|
|
)
|
|
|
|
vocoder_config = SpeechT5HifiGanConfig(
|
|
model_in_dim=8,
|
|
sampling_rate=16000,
|
|
upsample_initial_channel=16,
|
|
upsample_rates=[2, 2],
|
|
upsample_kernel_sizes=[4, 4],
|
|
resblock_kernel_sizes=[3, 7],
|
|
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]],
|
|
normalize_before=False,
|
|
)
|
|
|
|
vocoder = SpeechT5HifiGan(vocoder_config)
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"text_encoder_2": text_encoder_2,
|
|
"tokenizer": tokenizer,
|
|
"tokenizer_2": tokenizer_2,
|
|
"feature_extractor": feature_extractor,
|
|
"language_model": language_model,
|
|
"projection_model": projection_model,
|
|
"vocoder": vocoder,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A hammer hitting a wooden surface",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
}
|
|
return inputs
|
|
|
|
@pytest.mark.xfail(
|
|
condition=is_transformers_version(">=", "4.54.1"),
|
|
reason="Test currently fails on Transformers version 4.54.1.",
|
|
strict=False,
|
|
)
|
|
def test_audioldm2_ddim(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
audioldm_pipe = AudioLDM2Pipeline(**components)
|
|
audioldm_pipe = audioldm_pipe.to(torch_device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = audioldm_pipe(**inputs)
|
|
audio = output.audios[0]
|
|
|
|
assert audio.ndim == 1
|
|
assert len(audio) == 256
|
|
|
|
audio_slice = audio[:10]
|
|
expected_slice = np.array(
|
|
[
|
|
2.602e-03,
|
|
1.729e-03,
|
|
1.863e-03,
|
|
-2.219e-03,
|
|
-2.656e-03,
|
|
-2.017e-03,
|
|
-2.648e-03,
|
|
-2.115e-03,
|
|
-2.502e-03,
|
|
-2.081e-03,
|
|
]
|
|
)
|
|
|
|
assert np.abs(audio_slice - expected_slice).max() < 1e-4
|
|
|
|
def test_audioldm2_prompt_embeds(self):
|
|
components = self.get_dummy_components()
|
|
audioldm_pipe = AudioLDM2Pipeline(**components)
|
|
audioldm_pipe = audioldm_pipe.to(torch_device)
|
|
audioldm_pipe = audioldm_pipe.to(torch_device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["prompt"] = 3 * [inputs["prompt"]]
|
|
|
|
# forward
|
|
output = audioldm_pipe(**inputs)
|
|
audio_1 = output.audios[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
prompt = 3 * [inputs.pop("prompt")]
|
|
|
|
text_inputs = audioldm_pipe.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=audioldm_pipe.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_inputs = text_inputs["input_ids"].to(torch_device)
|
|
|
|
clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs)
|
|
clap_prompt_embeds = clap_prompt_embeds[:, None, :]
|
|
|
|
text_inputs = audioldm_pipe.tokenizer_2(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=True,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_inputs = text_inputs["input_ids"].to(torch_device)
|
|
|
|
t5_prompt_embeds = audioldm_pipe.text_encoder_2(
|
|
text_inputs,
|
|
)
|
|
t5_prompt_embeds = t5_prompt_embeds[0]
|
|
|
|
projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0]
|
|
generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8)
|
|
|
|
inputs["prompt_embeds"] = t5_prompt_embeds
|
|
inputs["generated_prompt_embeds"] = generated_prompt_embeds
|
|
|
|
# forward
|
|
output = audioldm_pipe(**inputs)
|
|
audio_2 = output.audios[0]
|
|
|
|
assert np.abs(audio_1 - audio_2).max() < 1e-2
|
|
|
|
def test_audioldm2_negative_prompt_embeds(self):
|
|
components = self.get_dummy_components()
|
|
audioldm_pipe = AudioLDM2Pipeline(**components)
|
|
audioldm_pipe = audioldm_pipe.to(torch_device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
negative_prompt = 3 * ["this is a negative prompt"]
|
|
inputs["negative_prompt"] = negative_prompt
|
|
inputs["prompt"] = 3 * [inputs["prompt"]]
|
|
|
|
# forward
|
|
output = audioldm_pipe(**inputs)
|
|
audio_1 = output.audios[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
prompt = 3 * [inputs.pop("prompt")]
|
|
|
|
embeds = []
|
|
generated_embeds = []
|
|
for p in [prompt, negative_prompt]:
|
|
text_inputs = audioldm_pipe.tokenizer(
|
|
p,
|
|
padding="max_length",
|
|
max_length=audioldm_pipe.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_inputs = text_inputs["input_ids"].to(torch_device)
|
|
|
|
clap_prompt_embeds = audioldm_pipe.text_encoder.get_text_features(text_inputs)
|
|
clap_prompt_embeds = clap_prompt_embeds[:, None, :]
|
|
|
|
text_inputs = audioldm_pipe.tokenizer_2(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=True if len(embeds) == 0 else embeds[0].shape[1],
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_inputs = text_inputs["input_ids"].to(torch_device)
|
|
|
|
t5_prompt_embeds = audioldm_pipe.text_encoder_2(
|
|
text_inputs,
|
|
)
|
|
t5_prompt_embeds = t5_prompt_embeds[0]
|
|
|
|
projection_embeds = audioldm_pipe.projection_model(clap_prompt_embeds, t5_prompt_embeds)[0]
|
|
generated_prompt_embeds = audioldm_pipe.generate_language_model(projection_embeds, max_new_tokens=8)
|
|
|
|
embeds.append(t5_prompt_embeds)
|
|
generated_embeds.append(generated_prompt_embeds)
|
|
|
|
inputs["prompt_embeds"], inputs["negative_prompt_embeds"] = embeds
|
|
inputs["generated_prompt_embeds"], inputs["negative_generated_prompt_embeds"] = generated_embeds
|
|
|
|
# forward
|
|
output = audioldm_pipe(**inputs)
|
|
audio_2 = output.audios[0]
|
|
|
|
assert np.abs(audio_1 - audio_2).max() < 1e-2
|
|
|
|
@pytest.mark.xfail(
|
|
condition=is_transformers_version(">=", "4.54.1"),
|
|
reason="Test currently fails on Transformers version 4.54.1.",
|
|
strict=False,
|
|
)
|
|
def test_audioldm2_negative_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
|
|
audioldm_pipe = AudioLDM2Pipeline(**components)
|
|
audioldm_pipe = audioldm_pipe.to(device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
negative_prompt = "egg cracking"
|
|
output = audioldm_pipe(**inputs, negative_prompt=negative_prompt)
|
|
audio = output.audios[0]
|
|
|
|
assert audio.ndim == 1
|
|
assert len(audio) == 256
|
|
|
|
audio_slice = audio[:10]
|
|
expected_slice = np.array(
|
|
[0.0026, 0.0017, 0.0018, -0.0022, -0.0026, -0.002, -0.0026, -0.0021, -0.0025, -0.0021]
|
|
)
|
|
|
|
assert np.abs(audio_slice - expected_slice).max() < 1e-4
|
|
|
|
def test_audioldm2_num_waveforms_per_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
|
|
audioldm_pipe = AudioLDM2Pipeline(**components)
|
|
audioldm_pipe = audioldm_pipe.to(device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A hammer hitting a wooden surface"
|
|
|
|
# test num_waveforms_per_prompt=1 (default)
|
|
audios = audioldm_pipe(prompt, num_inference_steps=2).audios
|
|
|
|
assert audios.shape == (1, 256)
|
|
|
|
# test num_waveforms_per_prompt=1 (default) for batch of prompts
|
|
batch_size = 2
|
|
audios = audioldm_pipe([prompt] * batch_size, num_inference_steps=2).audios
|
|
|
|
assert audios.shape == (batch_size, 256)
|
|
|
|
# test num_waveforms_per_prompt for single prompt
|
|
num_waveforms_per_prompt = 1
|
|
audios = audioldm_pipe(prompt, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt).audios
|
|
|
|
assert audios.shape == (num_waveforms_per_prompt, 256)
|
|
|
|
# test num_waveforms_per_prompt for batch of prompts
|
|
batch_size = 2
|
|
audios = audioldm_pipe(
|
|
[prompt] * batch_size, num_inference_steps=2, num_waveforms_per_prompt=num_waveforms_per_prompt
|
|
).audios
|
|
|
|
assert audios.shape == (batch_size * num_waveforms_per_prompt, 256)
|
|
|
|
def test_audioldm2_audio_length_in_s(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
audioldm_pipe = AudioLDM2Pipeline(**components)
|
|
audioldm_pipe = audioldm_pipe.to(torch_device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
vocoder_sampling_rate = audioldm_pipe.vocoder.config.sampling_rate
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = audioldm_pipe(audio_length_in_s=0.016, **inputs)
|
|
audio = output.audios[0]
|
|
|
|
assert audio.ndim == 1
|
|
assert len(audio) / vocoder_sampling_rate == 0.016
|
|
|
|
output = audioldm_pipe(audio_length_in_s=0.032, **inputs)
|
|
audio = output.audios[0]
|
|
|
|
assert audio.ndim == 1
|
|
assert len(audio) / vocoder_sampling_rate == 0.032
|
|
|
|
def test_audioldm2_vocoder_model_in_dim(self):
|
|
components = self.get_dummy_components()
|
|
audioldm_pipe = AudioLDM2Pipeline(**components)
|
|
audioldm_pipe = audioldm_pipe.to(torch_device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = ["hey"]
|
|
|
|
output = audioldm_pipe(prompt, num_inference_steps=1)
|
|
audio_shape = output.audios.shape
|
|
assert audio_shape == (1, 256)
|
|
|
|
config = audioldm_pipe.vocoder.config
|
|
config.model_in_dim *= 2
|
|
audioldm_pipe.vocoder = SpeechT5HifiGan(config).to(torch_device)
|
|
output = audioldm_pipe(prompt, num_inference_steps=1)
|
|
audio_shape = output.audios.shape
|
|
# waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram
|
|
assert audio_shape == (1, 256)
|
|
|
|
def test_attention_slicing_forward_pass(self):
|
|
self._test_attention_slicing_forward_pass(test_mean_pixel_difference=False)
|
|
|
|
@unittest.skip("Raises a not implemented error in AudioLDM2")
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
pass
|
|
|
|
def test_dict_tuple_outputs_equivalent(self):
|
|
# increase tolerance from 1e-4 -> 3e-4 to account for large composite model
|
|
super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-4)
|
|
|
|
@pytest.mark.xfail(
|
|
condition=is_torch_version(">=", "2.7"),
|
|
reason="Test currently fails on PyTorch 2.7.",
|
|
strict=False,
|
|
)
|
|
def test_inference_batch_single_identical(self):
|
|
# increase tolerance from 1e-4 -> 2e-4 to account for large composite model
|
|
self._test_inference_batch_single_identical(expected_max_diff=2e-4)
|
|
|
|
def test_save_load_local(self):
|
|
# increase tolerance from 1e-4 -> 2e-4 to account for large composite model
|
|
super().test_save_load_local(expected_max_difference=2e-4)
|
|
|
|
def test_save_load_optional_components(self):
|
|
# increase tolerance from 1e-4 -> 2e-4 to account for large composite model
|
|
super().test_save_load_optional_components(expected_max_difference=2e-4)
|
|
|
|
def test_to_dtype(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
# The method component.dtype returns the dtype of the first parameter registered in the model, not the
|
|
# dtype of the entire model. In the case of CLAP, the first parameter is a float64 constant (logit scale)
|
|
model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")}
|
|
|
|
# Without the logit scale parameters, everything is float32
|
|
model_dtypes.pop("text_encoder")
|
|
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values()))
|
|
|
|
# the CLAP sub-models are float32
|
|
model_dtypes["clap_text_branch"] = components["text_encoder"].text_model.dtype
|
|
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes.values()))
|
|
|
|
# Once we send to fp16, all params are in half-precision, including the logit scale
|
|
pipe.to(dtype=torch.float16)
|
|
model_dtypes = {key: component.dtype for key, component in components.items() if hasattr(component, "dtype")}
|
|
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes.values()))
|
|
|
|
@unittest.skip("Test not supported.")
|
|
def test_sequential_cpu_offload_forward_pass(self):
|
|
pass
|
|
|
|
@unittest.skip("Test not supported for now because of the use of `projection_model` in `encode_prompt()`.")
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported yet due to CLAPModel.")
|
|
def test_sequential_offload_forward_pass_twice(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported yet, the second forward has mixed devices and `vocoder` is not offloaded.")
|
|
def test_cpu_offload_forward_pass_twice(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported yet. `vocoder` is not offloaded.")
|
|
def test_model_cpu_offload_forward_pass(self):
|
|
pass
|
|
|
|
|
|
@nightly
|
|
class AudioLDM2PipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
|
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
|
inputs = {
|
|
"prompt": "A hammer hitting a wooden surface",
|
|
"latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 2.5,
|
|
}
|
|
return inputs
|
|
|
|
def get_inputs_tts(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
latents = np.random.RandomState(seed).standard_normal((1, 8, 128, 16))
|
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
|
inputs = {
|
|
"prompt": "A men saying",
|
|
"transcription": "hello my name is John",
|
|
"latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 2.5,
|
|
}
|
|
return inputs
|
|
|
|
def test_audioldm2(self):
|
|
audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2")
|
|
audioldm_pipe = audioldm_pipe.to(torch_device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
inputs["num_inference_steps"] = 25
|
|
audio = audioldm_pipe(**inputs).audios[0]
|
|
|
|
assert audio.ndim == 1
|
|
assert len(audio) == 81952
|
|
|
|
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
|
|
audio_slice = audio[17275:17285]
|
|
expected_slice = np.array([0.0791, 0.0666, 0.1158, 0.1227, 0.1171, -0.2880, -0.1940, -0.0283, -0.0126, 0.1127])
|
|
max_diff = np.abs(expected_slice - audio_slice).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_audioldm2_lms(self):
|
|
audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2")
|
|
audioldm_pipe.scheduler = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config)
|
|
audioldm_pipe = audioldm_pipe.to(torch_device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
audio = audioldm_pipe(**inputs).audios[0]
|
|
|
|
assert audio.ndim == 1
|
|
assert len(audio) == 81952
|
|
|
|
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
|
|
audio_slice = audio[31390:31400]
|
|
expected_slice = np.array(
|
|
[-0.1318, -0.0577, 0.0446, -0.0573, 0.0659, 0.1074, -0.2600, 0.0080, -0.2190, -0.4301]
|
|
)
|
|
max_diff = np.abs(expected_slice - audio_slice).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_audioldm2_large(self):
|
|
audioldm_pipe = AudioLDM2Pipeline.from_pretrained("cvssp/audioldm2-large")
|
|
audioldm_pipe = audioldm_pipe.to(torch_device)
|
|
audioldm_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
audio = audioldm_pipe(**inputs).audios[0]
|
|
|
|
assert audio.ndim == 1
|
|
assert len(audio) == 81952
|
|
|
|
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
|
|
audio_slice = audio[8825:8835]
|
|
expected_slice = np.array(
|
|
[-0.1829, -0.1461, 0.0759, -0.1493, -0.1396, 0.5783, 0.3001, -0.3038, -0.0639, -0.2244]
|
|
)
|
|
max_diff = np.abs(expected_slice - audio_slice).max()
|
|
assert max_diff < 1e-3
|
|
|
|
def test_audioldm2_tts(self):
|
|
audioldm_tts_pipe = AudioLDM2Pipeline.from_pretrained("anhnct/audioldm2_gigaspeech")
|
|
audioldm_tts_pipe = audioldm_tts_pipe.to(torch_device)
|
|
audioldm_tts_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs_tts(torch_device)
|
|
audio = audioldm_tts_pipe(**inputs).audios[0]
|
|
|
|
assert audio.ndim == 1
|
|
assert len(audio) == 81952
|
|
|
|
# check the portion of the generated audio with the largest dynamic range (reduces flakiness)
|
|
audio_slice = audio[8825:8835]
|
|
expected_slice = np.array(
|
|
[-0.1829, -0.1461, 0.0759, -0.1493, -0.1396, 0.5783, 0.3001, -0.3038, -0.0639, -0.2244]
|
|
)
|
|
max_diff = np.abs(expected_slice - audio_slice).max()
|
|
assert max_diff < 1e-3
|