mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
228 lines
7.2 KiB
Python
228 lines
7.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import copy
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import UNetSpatioTemporalConditionModel
|
|
from diffusers.utils import logging
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
|
|
from ...testing_utils import (
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
skip_mps,
|
|
torch_device,
|
|
)
|
|
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
@skip_mps
|
|
class UNetSpatioTemporalConditionModelTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
|
|
model_class = UNetSpatioTemporalConditionModel
|
|
main_input_name = "sample"
|
|
|
|
@property
|
|
def dummy_input(self):
|
|
batch_size = 2
|
|
num_frames = 2
|
|
num_channels = 4
|
|
sizes = (32, 32)
|
|
|
|
noise = floats_tensor((batch_size, num_frames, num_channels) + sizes).to(torch_device)
|
|
time_step = torch.tensor([10]).to(torch_device)
|
|
encoder_hidden_states = floats_tensor((batch_size, 1, 32)).to(torch_device)
|
|
|
|
return {
|
|
"sample": noise,
|
|
"timestep": time_step,
|
|
"encoder_hidden_states": encoder_hidden_states,
|
|
"added_time_ids": self._get_add_time_ids(),
|
|
}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (2, 2, 4, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (4, 32, 32)
|
|
|
|
@property
|
|
def fps(self):
|
|
return 6
|
|
|
|
@property
|
|
def motion_bucket_id(self):
|
|
return 127
|
|
|
|
@property
|
|
def noise_aug_strength(self):
|
|
return 0.02
|
|
|
|
@property
|
|
def addition_time_embed_dim(self):
|
|
return 32
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"block_out_channels": (32, 64),
|
|
"down_block_types": (
|
|
"CrossAttnDownBlockSpatioTemporal",
|
|
"DownBlockSpatioTemporal",
|
|
),
|
|
"up_block_types": (
|
|
"UpBlockSpatioTemporal",
|
|
"CrossAttnUpBlockSpatioTemporal",
|
|
),
|
|
"cross_attention_dim": 32,
|
|
"num_attention_heads": 8,
|
|
"out_channels": 4,
|
|
"in_channels": 4,
|
|
"layers_per_block": 2,
|
|
"sample_size": 32,
|
|
"projection_class_embeddings_input_dim": self.addition_time_embed_dim * 3,
|
|
"addition_time_embed_dim": self.addition_time_embed_dim,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def _get_add_time_ids(self, do_classifier_free_guidance=True):
|
|
add_time_ids = [self.fps, self.motion_bucket_id, self.noise_aug_strength]
|
|
|
|
passed_add_embed_dim = self.addition_time_embed_dim * len(add_time_ids)
|
|
expected_add_embed_dim = self.addition_time_embed_dim * 3
|
|
|
|
if expected_add_embed_dim != passed_add_embed_dim:
|
|
raise ValueError(
|
|
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
|
)
|
|
|
|
add_time_ids = torch.tensor([add_time_ids], device=torch_device)
|
|
add_time_ids = add_time_ids.repeat(1, 1)
|
|
if do_classifier_free_guidance:
|
|
add_time_ids = torch.cat([add_time_ids, add_time_ids])
|
|
|
|
return add_time_ids
|
|
|
|
@unittest.skip("Number of Norm Groups is not configurable")
|
|
def test_forward_with_norm_groups(self):
|
|
pass
|
|
|
|
@unittest.skip("Deprecated functionality")
|
|
def test_model_attention_slicing(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported")
|
|
def test_model_with_use_linear_projection(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported")
|
|
def test_model_with_simple_projection(self):
|
|
pass
|
|
|
|
@unittest.skip("Not supported")
|
|
def test_model_with_class_embeddings_concat(self):
|
|
pass
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_enable_works(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
|
|
model.enable_xformers_memory_efficient_attention()
|
|
|
|
assert (
|
|
model.mid_block.attentions[0].transformer_blocks[0].attn1.processor.__class__.__name__
|
|
== "XFormersAttnProcessor"
|
|
), "xformers is not enabled"
|
|
|
|
def test_model_with_num_attention_heads_tuple(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["num_attention_heads"] = (8, 16)
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_model_with_cross_attention_dim_tuple(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["cross_attention_dim"] = (32, 32)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output.sample
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_gradient_checkpointing_is_applied(self):
|
|
expected_set = {
|
|
"TransformerSpatioTemporalModel",
|
|
"CrossAttnDownBlockSpatioTemporal",
|
|
"DownBlockSpatioTemporal",
|
|
"UpBlockSpatioTemporal",
|
|
"CrossAttnUpBlockSpatioTemporal",
|
|
"UNetMidBlockSpatioTemporal",
|
|
}
|
|
num_attention_heads = (8, 16)
|
|
super().test_gradient_checkpointing_is_applied(
|
|
expected_set=expected_set, num_attention_heads=num_attention_heads
|
|
)
|
|
|
|
def test_pickle(self):
|
|
# enable deterministic behavior for gradient checkpointing
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
init_dict["num_attention_heads"] = (8, 16)
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
sample = model(**inputs_dict).sample
|
|
|
|
sample_copy = copy.copy(sample)
|
|
|
|
assert (sample - sample_copy).abs().max() < 1e-4
|