mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* up * convert dual unet * revert dual attn * adapt for vd-official * test the full pipeline * mixed inference * mixed inference for text2img * add image prompting * fix clip norm * split text2img and img2img * fix format * refactor text2img * mega pipeline * add optimus * refactor image var * wip text_unet * text unet end to end * update tests * reshape * fix image to text * add some first docs * dual guided pipeline * fix token ratio * propose change * dual transformer as a native module * DualTransformer(nn.Module) * DualTransformer(nn.Module) * correct unconditional image * save-load with mega pipeline * remove image to text * up * uP * fix * up * final fix * remove_unused_weights * test updates * save progress * uP * fix dual prompts * some fixes * finish * style * finish renaming * up * fix * fix * fix * finish Co-authored-by: anton-l <anton@huggingface.co>
113 lines
3.8 KiB
Python
113 lines
3.8 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import VersatileDiffusionDualGuidedPipeline
|
|
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
|
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class VersatileDiffusionDualGuidedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pass
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class VersatileDiffusionDualGuidedPipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_remove_unused_weights_save_load(self):
|
|
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion")
|
|
# remove text_unet
|
|
pipe.remove_unused_weights()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
second_prompt = load_image(
|
|
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
|
|
)
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
image = pipe(
|
|
prompt="first prompt",
|
|
image=second_prompt,
|
|
text_to_image_strength=0.75,
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=2,
|
|
output_type="numpy",
|
|
).images
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
pipe.save_pretrained(tmpdirname)
|
|
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained(tmpdirname)
|
|
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = generator.manual_seed(0)
|
|
new_image = pipe(
|
|
prompt="first prompt",
|
|
image=second_prompt,
|
|
text_to_image_strength=0.75,
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=2,
|
|
output_type="numpy",
|
|
).images
|
|
|
|
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
|
|
|
|
def test_inference_dual_guided(self):
|
|
pipe = VersatileDiffusionDualGuidedPipeline.from_pretrained("shi-labs/versatile-diffusion")
|
|
pipe.remove_unused_weights()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
first_prompt = "cyberpunk 2077"
|
|
second_prompt = load_image(
|
|
"https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg"
|
|
)
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
image = pipe(
|
|
prompt=first_prompt,
|
|
image=second_prompt,
|
|
text_to_image_strength=0.75,
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=50,
|
|
output_type="numpy",
|
|
).images
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.014, 0.0112, 0.0136, 0.0145, 0.0107, 0.0113, 0.0272, 0.0215, 0.0216])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|