mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* Changes for VQ-diffusion VQVAE Add specify dimension of embeddings to VQModel: `VQModel` will by default set the dimension of embeddings to the number of latent channels. The VQ-diffusion VQVAE has a smaller embedding dimension, 128, than number of latent channels, 256. Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down unet block helpers. VQ-diffusion's VQVAE uses those two block types. * Changes for VQ-diffusion transformer Modify attention.py so SpatialTransformer can be used for VQ-diffusion's transformer. SpatialTransformer: - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous. - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs - modified forward pass to take optional timestep embeddings ImagePositionalEmbeddings: - added to provide positional embeddings to discrete inputs for latent pixels BasicTransformerBlock: - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings - modified forward pass to take optional timestep embeddings CrossAttention: - now may optionally take a bias parameter for its query, key, and value linear layers FeedForward: - Internal layers are now configurable ApproximateGELU: - Activation function in VQ-diffusion's feedforward layer AdaLayerNorm: - Norm layer modified to incorporate timestep embeddings * Add VQ-diffusion scheduler * Add VQ-diffusion pipeline * Add VQ-diffusion convert script to diffusers * Add VQ-diffusion dummy objects * Add VQ-diffusion markdown docs * Add VQ-diffusion tests * some renaming * some fixes * more renaming * correct * fix typo * correct weights * finalize * fix tests * Apply suggestions from code review Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com> * Apply suggestions from code review Co-authored-by: Pedro Cuenca <pedro@huggingface.co> * finish * finish * up Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com> Co-authored-by: Pedro Cuenca <pedro@huggingface.co>
176 lines
5.5 KiB
Python
176 lines
5.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel
|
|
from diffusers.utils import load_image, slow, torch_device
|
|
from diffusers.utils.testing_utils import require_torch_gpu
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class VQDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@property
|
|
def num_embed(self):
|
|
return 12
|
|
|
|
@property
|
|
def num_embeds_ada_norm(self):
|
|
return 12
|
|
|
|
@property
|
|
def dummy_vqvae(self):
|
|
torch.manual_seed(0)
|
|
model = VQModel(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=3,
|
|
num_vq_embeddings=self.num_embed,
|
|
vq_embed_dim=3,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_tokenizer(self):
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
return tokenizer
|
|
|
|
@property
|
|
def dummy_text_encoder(self):
|
|
torch.manual_seed(0)
|
|
config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
return CLIPTextModel(config)
|
|
|
|
@property
|
|
def dummy_transformer(self):
|
|
torch.manual_seed(0)
|
|
|
|
height = 12
|
|
width = 12
|
|
|
|
model_kwargs = {
|
|
"attention_bias": True,
|
|
"cross_attention_dim": 32,
|
|
"attention_head_dim": height * width,
|
|
"num_attention_heads": 1,
|
|
"num_vector_embeds": self.num_embed,
|
|
"num_embeds_ada_norm": self.num_embeds_ada_norm,
|
|
"norm_num_groups": 32,
|
|
"sample_size": width,
|
|
"activation_fn": "geglu-approximate",
|
|
}
|
|
|
|
model = Transformer2DModel(**model_kwargs)
|
|
return model
|
|
|
|
def test_vq_diffusion(self):
|
|
device = "cpu"
|
|
|
|
vqvae = self.dummy_vqvae
|
|
text_encoder = self.dummy_text_encoder
|
|
tokenizer = self.dummy_tokenizer
|
|
transformer = self.dummy_transformer
|
|
scheduler = VQDiffusionScheduler(self.num_embed)
|
|
|
|
pipe = VQDiffusionPipeline(
|
|
vqvae=vqvae, text_encoder=text_encoder, tokenizer=tokenizer, transformer=transformer, scheduler=scheduler
|
|
)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "teddy bear playing in the pool"
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np")
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = pipe(
|
|
[prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 24, 24, 3)
|
|
|
|
expected_slice = np.array([0.6583, 0.6410, 0.5325, 0.5635, 0.5563, 0.4234, 0.6008, 0.5491, 0.4880])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class VQDiffusionPipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_vq_diffusion(self):
|
|
expected_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/vq_diffusion/teddy_bear_pool.png"
|
|
)
|
|
expected_image = np.array(expected_image, dtype=np.float32) / 255.0
|
|
|
|
pipeline = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq")
|
|
pipeline = pipeline.to(torch_device)
|
|
pipeline.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
output = pipeline(
|
|
"teddy bear playing in the pool",
|
|
truncation_rate=0.86,
|
|
num_images_per_prompt=1,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (256, 256, 3)
|
|
assert np.abs(expected_image - image).max() < 1e-2
|