1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/pipelines/repaint/test_repaint.py
Revist d38c804320 feat: add repaint (#974)
* feat: add repaint

* fix: fix quality check with `make fix-copies`

* fix: remove old unnecessary arg

* chore: change default to DDPM (looks better in experiments)

* ".to(device)" changed to "device="

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* make generator device-specific

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* make generator device-specific and change shape

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* fix: add preprocessing for image and mask

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* fix: update test

Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>

* Update src/diffusers/pipelines/repaint/pipeline_repaint.py

Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>

* Add docs and examples

* Fix toctree

Co-authored-by: fja <fja@zurich.ibm.com>
Co-authored-by: Anton Lozhkov <aglozhkov@gmail.com>
Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
Co-authored-by: Anton Lozhkov <anton@huggingface.co>
2022-11-03 15:42:46 +01:00

66 lines
2.3 KiB
Python

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
import torch
from diffusers import RePaintPipeline, RePaintScheduler, UNet2DModel
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
torch.backends.cuda.matmul.allow_tf32 = False
@slow
@require_torch_gpu
class RepaintPipelineIntegrationTests(unittest.TestCase):
def test_celebahq(self):
original_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"repaint/celeba_hq_256.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/repaint/mask_256.png"
)
expected_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/"
"repaint/celeba_hq_256_result.png"
)
expected_image = np.array(expected_image, dtype=np.float32) / 255.0
model_id = "google/ddpm-ema-celebahq-256"
unet = UNet2DModel.from_pretrained(model_id)
scheduler = RePaintScheduler.from_config(model_id)
repaint = RePaintPipeline(unet=unet, scheduler=scheduler).to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
output = repaint(
original_image,
mask_image,
num_inference_steps=250,
eta=0.0,
jump_length=10,
jump_n_sample=10,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (256, 256, 3)
assert np.abs(expected_image - image).mean() < 1e-2