mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
499 lines
17 KiB
Python
499 lines
17 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNet2DConditionModel
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
backend_max_memory_allocated,
|
|
backend_reset_max_memory_allocated,
|
|
backend_reset_peak_memory_stats,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
load_image,
|
|
load_numpy,
|
|
require_accelerator,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusionUpscalePipelineFastTests(unittest.TestCase):
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
@property
|
|
def dummy_image(self):
|
|
batch_size = 1
|
|
num_channels = 3
|
|
sizes = (32, 32)
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
|
return image
|
|
|
|
@property
|
|
def dummy_cond_unet_upscale(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=7,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
# SD2-specific config below
|
|
attention_head_dim=8,
|
|
use_linear_projection=True,
|
|
only_cross_attention=(True, True, False),
|
|
num_class_embeds=100,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_vae(self):
|
|
torch.manual_seed(0)
|
|
model = AutoencoderKL(
|
|
block_out_channels=[32, 32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_text_encoder(self):
|
|
torch.manual_seed(0)
|
|
config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
# SD2-specific config below
|
|
hidden_act="gelu",
|
|
projection_dim=512,
|
|
)
|
|
return CLIPTextModel(config)
|
|
|
|
def test_stable_diffusion_upscale(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet_upscale
|
|
low_res_scheduler = DDPMScheduler()
|
|
scheduler = DDIMScheduler(prediction_type="v_prediction")
|
|
vae = self.dummy_vae
|
|
text_encoder = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionUpscalePipeline(
|
|
unet=unet,
|
|
low_res_scheduler=low_res_scheduler,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
max_noise_level=350,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
image=low_res_image,
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
noise_level=20,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
)
|
|
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = sd_pipe(
|
|
[prompt],
|
|
image=low_res_image,
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
noise_level=20,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
expected_height_width = low_res_image.size[0] * 4
|
|
assert image.shape == (1, expected_height_width, expected_height_width, 3)
|
|
expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_upscale_batch(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet_upscale
|
|
low_res_scheduler = DDPMScheduler()
|
|
scheduler = DDIMScheduler(prediction_type="v_prediction")
|
|
vae = self.dummy_vae
|
|
text_encoder = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionUpscalePipeline(
|
|
unet=unet,
|
|
low_res_scheduler=low_res_scheduler,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
max_noise_level=350,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
output = sd_pipe(
|
|
2 * [prompt],
|
|
image=2 * [low_res_image],
|
|
guidance_scale=6.0,
|
|
noise_level=20,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
)
|
|
image = output.images
|
|
assert image.shape[0] == 2
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
image=low_res_image,
|
|
generator=generator,
|
|
num_images_per_prompt=2,
|
|
guidance_scale=6.0,
|
|
noise_level=20,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
)
|
|
image = output.images
|
|
assert image.shape[0] == 2
|
|
|
|
def test_stable_diffusion_upscale_prompt_embeds(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet_upscale
|
|
low_res_scheduler = DDPMScheduler()
|
|
scheduler = DDIMScheduler(prediction_type="v_prediction")
|
|
vae = self.dummy_vae
|
|
text_encoder = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionUpscalePipeline(
|
|
unet=unet,
|
|
low_res_scheduler=low_res_scheduler,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
max_noise_level=350,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
image=low_res_image,
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
noise_level=20,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
)
|
|
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
prompt_embeds, negative_prompt_embeds = sd_pipe.encode_prompt(prompt, device, 1, False)
|
|
if negative_prompt_embeds is not None:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
|
|
image_from_prompt_embeds = sd_pipe(
|
|
prompt_embeds=prompt_embeds,
|
|
image=[low_res_image],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
noise_level=20,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_prompt_embeds_slice = image_from_prompt_embeds[0, -3:, -3:, -1]
|
|
|
|
expected_height_width = low_res_image.size[0] * 4
|
|
assert image.shape == (1, expected_height_width, expected_height_width, 3)
|
|
expected_slice = np.array([0.3113, 0.3910, 0.4272, 0.4859, 0.5061, 0.4652, 0.5362, 0.5715, 0.5661])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_prompt_embeds_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@require_accelerator
|
|
def test_stable_diffusion_upscale_fp16(self):
|
|
"""Test that stable diffusion upscale works with fp16"""
|
|
unet = self.dummy_cond_unet_upscale
|
|
low_res_scheduler = DDPMScheduler()
|
|
scheduler = DDIMScheduler(prediction_type="v_prediction")
|
|
vae = self.dummy_vae
|
|
text_encoder = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
|
|
|
# put models in fp16, except vae as it overflows in fp16
|
|
unet = unet.half()
|
|
text_encoder = text_encoder.half()
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionUpscalePipeline(
|
|
unet=unet,
|
|
low_res_scheduler=low_res_scheduler,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
max_noise_level=350,
|
|
)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.manual_seed(0)
|
|
image = sd_pipe(
|
|
[prompt],
|
|
image=low_res_image,
|
|
generator=generator,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
).images
|
|
|
|
expected_height_width = low_res_image.size[0] * 4
|
|
assert image.shape == (1, expected_height_width, expected_height_width, 3)
|
|
|
|
def test_stable_diffusion_upscale_from_save_pretrained(self):
|
|
pipes = []
|
|
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
low_res_scheduler = DDPMScheduler()
|
|
scheduler = DDIMScheduler(prediction_type="v_prediction")
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionUpscalePipeline(
|
|
unet=self.dummy_cond_unet_upscale,
|
|
low_res_scheduler=low_res_scheduler,
|
|
scheduler=scheduler,
|
|
vae=self.dummy_vae,
|
|
text_encoder=self.dummy_text_encoder,
|
|
tokenizer=tokenizer,
|
|
max_noise_level=350,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
pipes.append(sd_pipe)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
sd_pipe.save_pretrained(tmpdirname)
|
|
sd_pipe = StableDiffusionUpscalePipeline.from_pretrained(tmpdirname).to(device)
|
|
pipes.append(sd_pipe)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
|
low_res_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((64, 64))
|
|
|
|
image_slices = []
|
|
for pipe in pipes:
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image = pipe(
|
|
[prompt],
|
|
image=low_res_image,
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
noise_level=20,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
).images
|
|
image_slices.append(image[0, -3:, -3:, -1].flatten())
|
|
|
|
assert np.abs(image_slices[0] - image_slices[1]).max() < 1e-3
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class StableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_stable_diffusion_upscale_pipeline(self):
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/sd2-upscale/low_res_cat.png"
|
|
)
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
|
|
"/upsampled_cat.npy"
|
|
)
|
|
|
|
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
|
pipe = StableDiffusionUpscalePipeline.from_pretrained(model_id)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
prompt = "a cat sitting on a park bench"
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
image=image,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
assert np.abs(expected_image - image).max() < 1e-3
|
|
|
|
def test_stable_diffusion_upscale_pipeline_fp16(self):
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/sd2-upscale/low_res_cat.png"
|
|
)
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale"
|
|
"/upsampled_cat_fp16.npy"
|
|
)
|
|
|
|
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
|
pipe = StableDiffusionUpscalePipeline.from_pretrained(
|
|
model_id,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
prompt = "a cat sitting on a park bench"
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
image=image,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
assert np.abs(expected_image - image).max() < 5e-1
|
|
|
|
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
|
|
backend_empty_cache(torch_device)
|
|
backend_reset_max_memory_allocated(torch_device)
|
|
backend_reset_peak_memory_stats(torch_device)
|
|
|
|
image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/sd2-upscale/low_res_cat.png"
|
|
)
|
|
|
|
model_id = "stabilityai/stable-diffusion-x4-upscaler"
|
|
pipe = StableDiffusionUpscalePipeline.from_pretrained(
|
|
model_id,
|
|
torch_dtype=torch.float16,
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing(1)
|
|
pipe.enable_sequential_cpu_offload(device=torch_device)
|
|
|
|
prompt = "a cat sitting on a park bench"
|
|
|
|
generator = torch.manual_seed(0)
|
|
_ = pipe(
|
|
prompt=prompt,
|
|
image=image,
|
|
generator=generator,
|
|
num_inference_steps=5,
|
|
output_type="np",
|
|
)
|
|
|
|
mem_bytes = backend_max_memory_allocated(torch_device)
|
|
# make sure that less than 2.9 GB is allocated
|
|
assert mem_bytes < 2.9 * 10**9
|