mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
4573 lines
214 KiB
Python
4573 lines
214 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
#
|
||
# Based on [🪆Matryoshka Diffusion Models](https://huggingface.co/papers/2310.15111).
|
||
# Authors: Jiatao Gu, Shuangfei Zhai, Yizhe Zhang, Josh Susskind, Navdeep Jaitly
|
||
# Code: https://github.com/apple/ml-mdm with MIT license
|
||
#
|
||
# Adapted to Diffusers by [M. Tolga Cangöz](https://github.com/tolgacangoz).
|
||
|
||
|
||
import gc
|
||
import inspect
|
||
import math
|
||
from dataclasses import dataclass
|
||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
||
|
||
import numpy as np
|
||
import torch
|
||
import torch.nn.functional as F
|
||
import torch.utils.checkpoint
|
||
from packaging import version
|
||
from PIL import Image
|
||
from torch import nn
|
||
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection, T5EncoderModel, T5TokenizerFast
|
||
|
||
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
||
from diffusers.configuration_utils import ConfigMixin, FrozenDict, LegacyConfigMixin, register_to_config
|
||
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
||
from diffusers.loaders import (
|
||
FromSingleFileMixin,
|
||
IPAdapterMixin,
|
||
PeftAdapterMixin,
|
||
StableDiffusionLoraLoaderMixin,
|
||
TextualInversionLoaderMixin,
|
||
UNet2DConditionLoadersMixin,
|
||
)
|
||
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
||
from diffusers.models.activations import GELU, get_activation
|
||
from diffusers.models.attention_processor import (
|
||
ADDED_KV_ATTENTION_PROCESSORS,
|
||
CROSS_ATTENTION_PROCESSORS,
|
||
Attention,
|
||
AttentionProcessor,
|
||
AttnAddedKVProcessor,
|
||
AttnProcessor,
|
||
FusedAttnProcessor2_0,
|
||
)
|
||
from diffusers.models.downsampling import Downsample2D
|
||
from diffusers.models.embeddings import (
|
||
GaussianFourierProjection,
|
||
GLIGENTextBoundingboxProjection,
|
||
ImageHintTimeEmbedding,
|
||
ImageProjection,
|
||
ImageTimeEmbedding,
|
||
TextImageProjection,
|
||
TextImageTimeEmbedding,
|
||
TextTimeEmbedding,
|
||
TimestepEmbedding,
|
||
Timesteps,
|
||
)
|
||
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
||
from diffusers.models.modeling_utils import LegacyModelMixin, ModelMixin
|
||
from diffusers.models.resnet import ResnetBlock2D
|
||
from diffusers.models.unets.unet_2d_blocks import DownBlock2D, UpBlock2D
|
||
from diffusers.models.upsampling import Upsample2D
|
||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||
from diffusers.utils import (
|
||
USE_PEFT_BACKEND,
|
||
BaseOutput,
|
||
deprecate,
|
||
is_torch_xla_available,
|
||
logging,
|
||
replace_example_docstring,
|
||
scale_lora_layers,
|
||
unscale_lora_layers,
|
||
)
|
||
from diffusers.utils.torch_utils import apply_freeu, randn_tensor
|
||
|
||
|
||
if is_torch_xla_available():
|
||
import torch_xla.core.xla_model as xm # type: ignore
|
||
|
||
XLA_AVAILABLE = True
|
||
else:
|
||
XLA_AVAILABLE = False
|
||
|
||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||
|
||
EXAMPLE_DOC_STRING = """
|
||
Examples:
|
||
```py
|
||
>>> from diffusers import DiffusionPipeline
|
||
>>> from diffusers.utils import make_image_grid
|
||
|
||
>>> # nesting_level=0 -> 64x64; nesting_level=1 -> 256x256 - 64x64; nesting_level=2 -> 1024x1024 - 256x256 - 64x64
|
||
>>> pipe = DiffusionPipeline.from_pretrained("tolgacangoz/matryoshka-diffusion-models",
|
||
... nesting_level=0,
|
||
... trust_remote_code=False, # One needs to give permission for this code to run
|
||
... ).to("cuda")
|
||
|
||
>>> prompt0 = "a blue jay stops on the top of a helmet of Japanese samurai, background with sakura tree"
|
||
>>> prompt = f"breathtaking {prompt0}. award-winning, professional, highly detailed"
|
||
>>> image = pipe(prompt, num_inference_steps=50).images
|
||
>>> make_image_grid(image, rows=1, cols=len(image))
|
||
|
||
>>> # pipe.change_nesting_level(<int>) # 0, 1, or 2
|
||
>>> # 50+, 100+, and 250+ num_inference_steps are recommended for nesting levels 0, 1, and 2 respectively.
|
||
```
|
||
"""
|
||
|
||
|
||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
||
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
||
"""
|
||
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4
|
||
"""
|
||
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
||
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
||
# rescale the results from guidance (fixes overexposure)
|
||
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
||
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
||
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
||
return noise_cfg
|
||
|
||
|
||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||
def retrieve_timesteps(
|
||
scheduler,
|
||
num_inference_steps: Optional[int] = None,
|
||
device: Optional[Union[str, torch.device]] = None,
|
||
timesteps: Optional[List[int]] = None,
|
||
sigmas: Optional[List[float]] = None,
|
||
**kwargs,
|
||
):
|
||
"""
|
||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||
|
||
Args:
|
||
scheduler (`SchedulerMixin`):
|
||
The scheduler to get timesteps from.
|
||
num_inference_steps (`int`):
|
||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||
must be `None`.
|
||
device (`str` or `torch.device`, *optional*):
|
||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||
timesteps (`List[int]`, *optional*):
|
||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||
`num_inference_steps` and `sigmas` must be `None`.
|
||
sigmas (`List[float]`, *optional*):
|
||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||
`num_inference_steps` and `timesteps` must be `None`.
|
||
|
||
Returns:
|
||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||
second element is the number of inference steps.
|
||
"""
|
||
if timesteps is not None and sigmas is not None:
|
||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||
if timesteps is not None:
|
||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||
if not accepts_timesteps:
|
||
raise ValueError(
|
||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||
)
|
||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||
timesteps = scheduler.timesteps
|
||
num_inference_steps = len(timesteps)
|
||
elif sigmas is not None:
|
||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||
if not accept_sigmas:
|
||
raise ValueError(
|
||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||
)
|
||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||
timesteps = scheduler.timesteps
|
||
num_inference_steps = len(timesteps)
|
||
else:
|
||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||
timesteps = scheduler.timesteps
|
||
return timesteps, num_inference_steps
|
||
|
||
|
||
# Copied from diffusers.models.attention._chunked_feed_forward
|
||
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int):
|
||
# "feed_forward_chunk_size" can be used to save memory
|
||
if hidden_states.shape[chunk_dim] % chunk_size != 0:
|
||
raise ValueError(
|
||
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`."
|
||
)
|
||
|
||
num_chunks = hidden_states.shape[chunk_dim] // chunk_size
|
||
ff_output = torch.cat(
|
||
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)],
|
||
dim=chunk_dim,
|
||
)
|
||
return ff_output
|
||
|
||
|
||
@dataclass
|
||
class MatryoshkaDDIMSchedulerOutput(BaseOutput):
|
||
"""
|
||
Output class for the scheduler's `step` function output.
|
||
|
||
Args:
|
||
prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
||
denoising loop.
|
||
pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
||
`pred_original_sample` can be used to preview progress or for guidance.
|
||
"""
|
||
|
||
prev_sample: Union[torch.Tensor, List[torch.Tensor]]
|
||
pred_original_sample: Optional[Union[torch.Tensor, List[torch.Tensor]]] = None
|
||
|
||
|
||
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
||
def betas_for_alpha_bar(
|
||
num_diffusion_timesteps,
|
||
max_beta=0.999,
|
||
alpha_transform_type="cosine",
|
||
):
|
||
"""
|
||
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
||
(1-beta) over time from t = [0,1].
|
||
|
||
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
||
to that part of the diffusion process.
|
||
|
||
|
||
Args:
|
||
num_diffusion_timesteps (`int`): the number of betas to produce.
|
||
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
||
prevent singularities.
|
||
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
||
Choose from `cosine` or `exp`
|
||
|
||
Returns:
|
||
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
||
"""
|
||
if alpha_transform_type == "cosine":
|
||
|
||
def alpha_bar_fn(t):
|
||
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
||
|
||
elif alpha_transform_type == "exp":
|
||
|
||
def alpha_bar_fn(t):
|
||
return math.exp(t * -12.0)
|
||
|
||
else:
|
||
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
||
|
||
betas = []
|
||
for i in range(num_diffusion_timesteps):
|
||
t1 = i / num_diffusion_timesteps
|
||
t2 = (i + 1) / num_diffusion_timesteps
|
||
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
||
return torch.tensor(betas, dtype=torch.float32)
|
||
|
||
|
||
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
||
def rescale_zero_terminal_snr(betas):
|
||
"""
|
||
Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
|
||
|
||
|
||
Args:
|
||
betas (`torch.Tensor`):
|
||
the betas that the scheduler is being initialized with.
|
||
|
||
Returns:
|
||
`torch.Tensor`: rescaled betas with zero terminal SNR
|
||
"""
|
||
# Convert betas to alphas_bar_sqrt
|
||
alphas = 1.0 - betas
|
||
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
||
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
||
|
||
# Store old values.
|
||
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
||
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
||
|
||
# Shift so the last timestep is zero.
|
||
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
||
|
||
# Scale so the first timestep is back to the old value.
|
||
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
||
|
||
# Convert alphas_bar_sqrt to betas
|
||
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
||
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
||
alphas = torch.cat([alphas_bar[0:1], alphas])
|
||
betas = 1 - alphas
|
||
|
||
return betas
|
||
|
||
|
||
class MatryoshkaDDIMScheduler(SchedulerMixin, ConfigMixin):
|
||
"""
|
||
`DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
||
non-Markovian guidance.
|
||
|
||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||
methods the library implements for all schedulers such as loading and saving.
|
||
|
||
Args:
|
||
num_train_timesteps (`int`, defaults to 1000):
|
||
The number of diffusion steps to train the model.
|
||
beta_start (`float`, defaults to 0.0001):
|
||
The starting `beta` value of inference.
|
||
beta_end (`float`, defaults to 0.02):
|
||
The final `beta` value.
|
||
beta_schedule (`str`, defaults to `"linear"`):
|
||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||
trained_betas (`np.ndarray`, *optional*):
|
||
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
||
clip_sample (`bool`, defaults to `True`):
|
||
Clip the predicted sample for numerical stability.
|
||
clip_sample_range (`float`, defaults to 1.0):
|
||
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
||
set_alpha_to_one (`bool`, defaults to `True`):
|
||
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
||
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
||
otherwise it uses the alpha value at step 0.
|
||
steps_offset (`int`, defaults to 0):
|
||
An offset added to the inference steps, as required by some model families.
|
||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||
Video](https://imagen.research.google/video/paper.pdf) paper).
|
||
thresholding (`bool`, defaults to `False`):
|
||
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
||
as Stable Diffusion.
|
||
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
||
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
||
sample_max_value (`float`, defaults to 1.0):
|
||
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
||
timestep_spacing (`str`, defaults to `"leading"`):
|
||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
||
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
||
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
||
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
||
"""
|
||
|
||
order = 1
|
||
|
||
@register_to_config
|
||
def __init__(
|
||
self,
|
||
num_train_timesteps: int = 1000,
|
||
beta_start: float = 0.0001,
|
||
beta_end: float = 0.02,
|
||
beta_schedule: str = "linear",
|
||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||
clip_sample: bool = True,
|
||
set_alpha_to_one: bool = True,
|
||
steps_offset: int = 0,
|
||
prediction_type: str = "epsilon",
|
||
thresholding: bool = False,
|
||
dynamic_thresholding_ratio: float = 0.995,
|
||
clip_sample_range: float = 1.0,
|
||
sample_max_value: float = 1.0,
|
||
timestep_spacing: str = "leading",
|
||
rescale_betas_zero_snr: bool = False,
|
||
):
|
||
if trained_betas is not None:
|
||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||
elif beta_schedule == "linear":
|
||
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
||
elif beta_schedule == "scaled_linear":
|
||
# this schedule is very specific to the latent diffusion model.
|
||
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
||
elif beta_schedule == "squaredcos_cap_v2":
|
||
if self.config.timestep_spacing == "matryoshka_style":
|
||
self.betas = torch.cat((torch.tensor([0]), betas_for_alpha_bar(num_train_timesteps)))
|
||
else:
|
||
# Glide cosine schedule
|
||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||
else:
|
||
raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
|
||
|
||
# Rescale for zero SNR
|
||
if rescale_betas_zero_snr:
|
||
self.betas = rescale_zero_terminal_snr(self.betas)
|
||
|
||
self.alphas = 1.0 - self.betas
|
||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||
|
||
# At every step in ddim, we are looking into the previous alphas_cumprod
|
||
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
||
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
||
# whether we use the final alpha of the "non-previous" one.
|
||
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
||
|
||
# standard deviation of the initial noise distribution
|
||
self.init_noise_sigma = 1.0
|
||
|
||
# setable values
|
||
self.num_inference_steps = None
|
||
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
||
|
||
self.scales = None
|
||
self.schedule_shifted_power = 1.0
|
||
|
||
def scale_model_input(self, sample: torch.Tensor, timestep: Optional[int] = None) -> torch.Tensor:
|
||
"""
|
||
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||
current timestep.
|
||
|
||
Args:
|
||
sample (`torch.Tensor`):
|
||
The input sample.
|
||
timestep (`int`, *optional*):
|
||
The current timestep in the diffusion chain.
|
||
|
||
Returns:
|
||
`torch.Tensor`:
|
||
A scaled input sample.
|
||
"""
|
||
return sample
|
||
|
||
def _get_variance(self, timestep, prev_timestep):
|
||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||
beta_prod_t = 1 - alpha_prod_t
|
||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||
|
||
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
||
|
||
return variance
|
||
|
||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
||
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
||
"""
|
||
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
||
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
||
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
||
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
||
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
||
|
||
https://huggingface.co/papers/2205.11487
|
||
"""
|
||
dtype = sample.dtype
|
||
batch_size, channels, *remaining_dims = sample.shape
|
||
|
||
if dtype not in (torch.float32, torch.float64):
|
||
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
||
|
||
# Flatten sample for doing quantile calculation along each image
|
||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||
|
||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||
|
||
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
||
s = torch.clamp(
|
||
s, min=1, max=self.config.sample_max_value
|
||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||
|
||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||
sample = sample.to(dtype)
|
||
|
||
return sample
|
||
|
||
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
||
"""
|
||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||
|
||
Args:
|
||
num_inference_steps (`int`):
|
||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||
"""
|
||
|
||
if num_inference_steps > self.config.num_train_timesteps:
|
||
raise ValueError(
|
||
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
||
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
||
f" maximal {self.config.num_train_timesteps} timesteps."
|
||
)
|
||
|
||
self.num_inference_steps = num_inference_steps
|
||
|
||
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
|
||
if self.config.timestep_spacing == "linspace":
|
||
timesteps = (
|
||
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
||
.round()[::-1]
|
||
.copy()
|
||
.astype(np.int64)
|
||
)
|
||
elif self.config.timestep_spacing == "leading":
|
||
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
||
# creates integer timesteps by multiplying by ratio
|
||
# casting to int to avoid issues when num_inference_step is power of 3
|
||
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
||
timesteps += self.config.steps_offset
|
||
elif self.config.timestep_spacing == "trailing":
|
||
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
||
# creates integer timesteps by multiplying by ratio
|
||
# casting to int to avoid issues when num_inference_step is power of 3
|
||
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
|
||
timesteps -= 1
|
||
elif self.config.timestep_spacing == "matryoshka_style":
|
||
step_ratio = (self.config.num_train_timesteps + 1) / (num_inference_steps + 1)
|
||
timesteps = (np.arange(0, num_inference_steps + 1) * step_ratio).round()[::-1].copy().astype(np.int64)
|
||
else:
|
||
raise ValueError(
|
||
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
|
||
)
|
||
|
||
self.timesteps = torch.from_numpy(timesteps).to(device)
|
||
|
||
def get_schedule_shifted(self, alpha_prod, scale_factor=None):
|
||
if (scale_factor is not None) and (scale_factor > 1): # rescale noise schedule
|
||
scale_factor = scale_factor**self.schedule_shifted_power
|
||
snr = alpha_prod / (1 - alpha_prod)
|
||
scaled_snr = snr / scale_factor
|
||
alpha_prod = 1 / (1 + 1 / scaled_snr)
|
||
return alpha_prod
|
||
|
||
def step(
|
||
self,
|
||
model_output: torch.Tensor,
|
||
timestep: int,
|
||
sample: torch.Tensor,
|
||
eta: float = 0.0,
|
||
use_clipped_model_output: bool = False,
|
||
generator=None,
|
||
variance_noise: Optional[torch.Tensor] = None,
|
||
return_dict: bool = True,
|
||
) -> Union[MatryoshkaDDIMSchedulerOutput, Tuple]:
|
||
"""
|
||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
||
process from the learned model outputs (most often the predicted noise).
|
||
|
||
Args:
|
||
model_output (`torch.Tensor`):
|
||
The direct output from learned diffusion model.
|
||
timestep (`float`):
|
||
The current discrete timestep in the diffusion chain.
|
||
sample (`torch.Tensor`):
|
||
A current instance of a sample created by the diffusion process.
|
||
eta (`float`):
|
||
The weight of noise for added noise in diffusion step.
|
||
use_clipped_model_output (`bool`, defaults to `False`):
|
||
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
||
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
||
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
||
`use_clipped_model_output` has no effect.
|
||
generator (`torch.Generator`, *optional*):
|
||
A random number generator.
|
||
variance_noise (`torch.Tensor`):
|
||
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
||
itself. Useful for methods such as [`CycleDiffusion`].
|
||
return_dict (`bool`, *optional*, defaults to `True`):
|
||
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
|
||
|
||
Returns:
|
||
[`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`:
|
||
If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
|
||
tuple is returned where the first element is the sample tensor.
|
||
|
||
"""
|
||
if self.num_inference_steps is None:
|
||
raise ValueError(
|
||
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||
)
|
||
|
||
# See formulas (12) and (16) of DDIM paper https://huggingface.co/papers/2010.02502
|
||
# Ideally, read DDIM paper in-detail understanding
|
||
|
||
# Notation (<variable name> -> <name in paper>
|
||
# - pred_noise_t -> e_theta(x_t, t)
|
||
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
||
# - std_dev_t -> sigma_t
|
||
# - eta -> η
|
||
# - pred_sample_direction -> "direction pointing to x_t"
|
||
# - pred_prev_sample -> "x_t-1"
|
||
|
||
# 1. get previous step value (=t-1)
|
||
if self.config.timestep_spacing != "matryoshka_style":
|
||
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
||
else:
|
||
prev_timestep = self.timesteps[torch.nonzero(self.timesteps == timestep).item() + 1]
|
||
|
||
# 2. compute alphas, betas
|
||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||
|
||
if self.config.timestep_spacing == "matryoshka_style" and len(model_output) > 1:
|
||
alpha_prod_t = torch.tensor([self.get_schedule_shifted(alpha_prod_t, s) for s in self.scales])
|
||
alpha_prod_t_prev = torch.tensor([self.get_schedule_shifted(alpha_prod_t_prev, s) for s in self.scales])
|
||
|
||
beta_prod_t = 1 - alpha_prod_t
|
||
|
||
# 3. compute predicted original sample from predicted noise also called
|
||
# "predicted x_0" of formula (12) from https://huggingface.co/papers/2010.02502
|
||
if self.config.prediction_type == "epsilon":
|
||
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
||
pred_epsilon = model_output
|
||
elif self.config.prediction_type == "sample":
|
||
pred_original_sample = model_output
|
||
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
||
elif self.config.prediction_type == "v_prediction":
|
||
if len(model_output) > 1:
|
||
pred_original_sample = []
|
||
pred_epsilon = []
|
||
for m_o, s, a_p_t, b_p_t in zip(model_output, sample, alpha_prod_t, beta_prod_t):
|
||
pred_original_sample.append((a_p_t**0.5) * s - (b_p_t**0.5) * m_o)
|
||
pred_epsilon.append((a_p_t**0.5) * m_o + (b_p_t**0.5) * s)
|
||
else:
|
||
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
||
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
||
else:
|
||
raise ValueError(
|
||
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
||
" `v_prediction`"
|
||
)
|
||
|
||
# 4. Clip or threshold "predicted x_0"
|
||
if self.config.thresholding:
|
||
if len(model_output) > 1:
|
||
pred_original_sample = [self._threshold_sample(p_o_s) for p_o_s in pred_original_sample]
|
||
else:
|
||
pred_original_sample = self._threshold_sample(pred_original_sample)
|
||
elif self.config.clip_sample:
|
||
if len(model_output) > 1:
|
||
pred_original_sample = [
|
||
p_o_s.clamp(-self.config.clip_sample_range, self.config.clip_sample_range)
|
||
for p_o_s in pred_original_sample
|
||
]
|
||
else:
|
||
pred_original_sample = pred_original_sample.clamp(
|
||
-self.config.clip_sample_range, self.config.clip_sample_range
|
||
)
|
||
|
||
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
||
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
||
variance = self._get_variance(timestep, prev_timestep)
|
||
std_dev_t = eta * variance ** (0.5)
|
||
|
||
if use_clipped_model_output:
|
||
# the pred_epsilon is always re-derived from the clipped x_0 in Glide
|
||
if len(model_output) > 1:
|
||
pred_epsilon = []
|
||
for s, a_p_t, p_o_s, b_p_t in zip(sample, alpha_prod_t, pred_original_sample, beta_prod_t):
|
||
pred_epsilon.append((s - a_p_t ** (0.5) * p_o_s) / b_p_t ** (0.5))
|
||
else:
|
||
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
||
|
||
# 6. compute "direction pointing to x_t" of formula (12) from https://huggingface.co/papers/2010.02502
|
||
if len(model_output) > 1:
|
||
pred_sample_direction = []
|
||
for p_e, a_p_t_p in zip(pred_epsilon, alpha_prod_t_prev):
|
||
pred_sample_direction.append((1 - a_p_t_p - std_dev_t**2) ** (0.5) * p_e)
|
||
else:
|
||
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
|
||
|
||
# 7. compute x_t without "random noise" of formula (12) from https://huggingface.co/papers/2010.02502
|
||
if len(model_output) > 1:
|
||
prev_sample = []
|
||
for p_o_s, p_s_d, a_p_t_p in zip(pred_original_sample, pred_sample_direction, alpha_prod_t_prev):
|
||
prev_sample.append(a_p_t_p ** (0.5) * p_o_s + p_s_d)
|
||
else:
|
||
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
||
|
||
if eta > 0:
|
||
if variance_noise is not None and generator is not None:
|
||
raise ValueError(
|
||
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
|
||
" `variance_noise` stays `None`."
|
||
)
|
||
|
||
if variance_noise is None:
|
||
if len(model_output) > 1:
|
||
variance_noise = []
|
||
for m_o in model_output:
|
||
variance_noise.append(
|
||
randn_tensor(m_o.shape, generator=generator, device=m_o.device, dtype=m_o.dtype)
|
||
)
|
||
else:
|
||
variance_noise = randn_tensor(
|
||
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
|
||
)
|
||
if len(model_output) > 1:
|
||
prev_sample = [p_s + std_dev_t * v_n for v_n, p_s in zip(variance_noise, prev_sample)]
|
||
else:
|
||
variance = std_dev_t * variance_noise
|
||
|
||
prev_sample = prev_sample + variance
|
||
|
||
if not return_dict:
|
||
return (prev_sample,)
|
||
|
||
return MatryoshkaDDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
||
|
||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
||
def add_noise(
|
||
self,
|
||
original_samples: torch.Tensor,
|
||
noise: torch.Tensor,
|
||
timesteps: torch.IntTensor,
|
||
) -> torch.Tensor:
|
||
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
||
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
||
# for the subsequent add_noise calls
|
||
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
|
||
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
|
||
timesteps = timesteps.to(original_samples.device)
|
||
|
||
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
||
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
||
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
||
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
||
|
||
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
||
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
||
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
||
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
||
|
||
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
||
return noisy_samples
|
||
|
||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
||
def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.IntTensor) -> torch.Tensor:
|
||
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
||
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
|
||
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
|
||
timesteps = timesteps.to(sample.device)
|
||
|
||
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
||
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
||
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
||
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
||
|
||
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
||
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
||
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
||
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
||
|
||
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
||
return velocity
|
||
|
||
def __len__(self):
|
||
return self.config.num_train_timesteps
|
||
|
||
|
||
class CrossAttnDownBlock2D(nn.Module):
|
||
def __init__(
|
||
self,
|
||
in_channels: int,
|
||
out_channels: int,
|
||
temb_channels: int,
|
||
dropout: float = 0.0,
|
||
num_layers: int = 1,
|
||
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
||
resnet_eps: float = 1e-6,
|
||
resnet_time_scale_shift: str = "default",
|
||
resnet_act_fn: str = "swish",
|
||
resnet_groups: int = 32,
|
||
resnet_pre_norm: bool = True,
|
||
norm_type: str = "layer_norm",
|
||
num_attention_heads: int = 1,
|
||
cross_attention_dim: int = 1280,
|
||
cross_attention_norm: Optional[str] = None,
|
||
output_scale_factor: float = 1.0,
|
||
downsample_padding: int = 1,
|
||
add_downsample: bool = True,
|
||
dual_cross_attention: bool = False,
|
||
use_linear_projection: bool = False,
|
||
only_cross_attention: bool = False,
|
||
upcast_attention: bool = False,
|
||
attention_type: str = "default",
|
||
attention_pre_only: bool = False,
|
||
attention_bias: bool = False,
|
||
use_attention_ffn: bool = True,
|
||
):
|
||
super().__init__()
|
||
resnets = []
|
||
attentions = []
|
||
|
||
self.has_cross_attention = True
|
||
self.num_attention_heads = num_attention_heads
|
||
if isinstance(transformer_layers_per_block, int):
|
||
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
||
|
||
for i in range(num_layers):
|
||
in_channels = in_channels if i == 0 else out_channels
|
||
resnets.append(
|
||
ResnetBlock2D(
|
||
in_channels=in_channels,
|
||
out_channels=out_channels,
|
||
temb_channels=temb_channels,
|
||
eps=resnet_eps,
|
||
groups=resnet_groups,
|
||
dropout=dropout,
|
||
time_embedding_norm=resnet_time_scale_shift,
|
||
non_linearity=resnet_act_fn,
|
||
output_scale_factor=output_scale_factor,
|
||
pre_norm=resnet_pre_norm,
|
||
)
|
||
)
|
||
attentions.append(
|
||
MatryoshkaTransformer2DModel(
|
||
num_attention_heads,
|
||
out_channels // num_attention_heads,
|
||
in_channels=out_channels,
|
||
num_layers=transformer_layers_per_block[i],
|
||
cross_attention_dim=cross_attention_dim,
|
||
upcast_attention=upcast_attention,
|
||
use_attention_ffn=use_attention_ffn,
|
||
)
|
||
)
|
||
self.attentions = nn.ModuleList(attentions)
|
||
self.resnets = nn.ModuleList(resnets)
|
||
|
||
if add_downsample:
|
||
self.downsamplers = nn.ModuleList(
|
||
[
|
||
Downsample2D(
|
||
out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
|
||
)
|
||
]
|
||
)
|
||
else:
|
||
self.downsamplers = None
|
||
|
||
self.gradient_checkpointing = False
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
temb: Optional[torch.Tensor] = None,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
additional_residuals: Optional[torch.Tensor] = None,
|
||
) -> Tuple[torch.Tensor, Tuple[torch.Tensor, ...]]:
|
||
if cross_attention_kwargs is not None:
|
||
if cross_attention_kwargs.get("scale", None) is not None:
|
||
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
||
|
||
output_states = ()
|
||
|
||
blocks = list(zip(self.resnets, self.attentions))
|
||
|
||
for i, (resnet, attn) in enumerate(blocks):
|
||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb)
|
||
hidden_states = attn(
|
||
hidden_states,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
attention_mask=attention_mask,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
return_dict=False,
|
||
)[0]
|
||
else:
|
||
hidden_states = resnet(hidden_states, temb)
|
||
hidden_states = attn(
|
||
hidden_states,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
attention_mask=attention_mask,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
return_dict=False,
|
||
)[0]
|
||
|
||
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
||
if i == len(blocks) - 1 and additional_residuals is not None:
|
||
hidden_states = hidden_states + additional_residuals
|
||
|
||
output_states = output_states + (hidden_states,)
|
||
|
||
if self.downsamplers is not None:
|
||
for downsampler in self.downsamplers:
|
||
hidden_states = downsampler(hidden_states)
|
||
|
||
output_states = output_states + (hidden_states,)
|
||
|
||
return hidden_states, output_states
|
||
|
||
|
||
class UNetMidBlock2DCrossAttn(nn.Module):
|
||
def __init__(
|
||
self,
|
||
in_channels: int,
|
||
temb_channels: int,
|
||
out_channels: Optional[int] = None,
|
||
dropout: float = 0.0,
|
||
num_layers: int = 1,
|
||
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
||
resnet_eps: float = 1e-6,
|
||
resnet_time_scale_shift: str = "default",
|
||
resnet_act_fn: str = "swish",
|
||
resnet_groups: int = 32,
|
||
resnet_groups_out: Optional[int] = None,
|
||
resnet_pre_norm: bool = True,
|
||
norm_type: str = "layer_norm",
|
||
num_attention_heads: int = 1,
|
||
output_scale_factor: float = 1.0,
|
||
cross_attention_dim: int = 1280,
|
||
cross_attention_norm: Optional[str] = None,
|
||
dual_cross_attention: bool = False,
|
||
use_linear_projection: bool = False,
|
||
upcast_attention: bool = False,
|
||
attention_type: str = "default",
|
||
attention_pre_only: bool = False,
|
||
attention_bias: bool = False,
|
||
use_attention_ffn: bool = True,
|
||
):
|
||
super().__init__()
|
||
|
||
out_channels = out_channels or in_channels
|
||
self.in_channels = in_channels
|
||
self.out_channels = out_channels
|
||
|
||
self.has_cross_attention = True
|
||
self.num_attention_heads = num_attention_heads
|
||
resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
||
|
||
# support for variable transformer layers per block
|
||
if isinstance(transformer_layers_per_block, int):
|
||
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
||
|
||
resnet_groups_out = resnet_groups_out or resnet_groups
|
||
|
||
# there is always at least one resnet
|
||
resnets = [
|
||
ResnetBlock2D(
|
||
in_channels=in_channels,
|
||
out_channels=out_channels,
|
||
temb_channels=temb_channels,
|
||
eps=resnet_eps,
|
||
groups=resnet_groups,
|
||
groups_out=resnet_groups_out,
|
||
dropout=dropout,
|
||
time_embedding_norm=resnet_time_scale_shift,
|
||
non_linearity=resnet_act_fn,
|
||
output_scale_factor=output_scale_factor,
|
||
pre_norm=resnet_pre_norm,
|
||
)
|
||
]
|
||
attentions = []
|
||
|
||
for i in range(num_layers):
|
||
attentions.append(
|
||
MatryoshkaTransformer2DModel(
|
||
num_attention_heads,
|
||
out_channels // num_attention_heads,
|
||
in_channels=out_channels,
|
||
num_layers=transformer_layers_per_block[i],
|
||
cross_attention_dim=cross_attention_dim,
|
||
upcast_attention=upcast_attention,
|
||
use_attention_ffn=use_attention_ffn,
|
||
)
|
||
)
|
||
resnets.append(
|
||
ResnetBlock2D(
|
||
in_channels=out_channels,
|
||
out_channels=out_channels,
|
||
temb_channels=temb_channels,
|
||
eps=resnet_eps,
|
||
groups=resnet_groups_out,
|
||
dropout=dropout,
|
||
time_embedding_norm=resnet_time_scale_shift,
|
||
non_linearity=resnet_act_fn,
|
||
output_scale_factor=output_scale_factor,
|
||
pre_norm=resnet_pre_norm,
|
||
)
|
||
)
|
||
|
||
self.attentions = nn.ModuleList(attentions)
|
||
self.resnets = nn.ModuleList(resnets)
|
||
|
||
self.gradient_checkpointing = False
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
temb: Optional[torch.Tensor] = None,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
) -> torch.Tensor:
|
||
if cross_attention_kwargs is not None:
|
||
if cross_attention_kwargs.get("scale", None) is not None:
|
||
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
||
|
||
hidden_states = self.resnets[0](hidden_states, temb)
|
||
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||
hidden_states = attn(
|
||
hidden_states,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
attention_mask=attention_mask,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
return_dict=False,
|
||
)[0]
|
||
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb)
|
||
else:
|
||
hidden_states = attn(
|
||
hidden_states,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
attention_mask=attention_mask,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
return_dict=False,
|
||
)[0]
|
||
hidden_states = resnet(hidden_states, temb)
|
||
|
||
return hidden_states
|
||
|
||
|
||
class CrossAttnUpBlock2D(nn.Module):
|
||
def __init__(
|
||
self,
|
||
in_channels: int,
|
||
out_channels: int,
|
||
prev_output_channel: int,
|
||
temb_channels: int,
|
||
resolution_idx: Optional[int] = None,
|
||
dropout: float = 0.0,
|
||
num_layers: int = 1,
|
||
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
||
resnet_eps: float = 1e-6,
|
||
resnet_time_scale_shift: str = "default",
|
||
resnet_act_fn: str = "swish",
|
||
resnet_groups: int = 32,
|
||
resnet_pre_norm: bool = True,
|
||
norm_type: str = "layer_norm",
|
||
num_attention_heads: int = 1,
|
||
cross_attention_dim: int = 1280,
|
||
cross_attention_norm: Optional[str] = None,
|
||
output_scale_factor: float = 1.0,
|
||
add_upsample: bool = True,
|
||
dual_cross_attention: bool = False,
|
||
use_linear_projection: bool = False,
|
||
only_cross_attention: bool = False,
|
||
upcast_attention: bool = False,
|
||
attention_type: str = "default",
|
||
attention_pre_only: bool = False,
|
||
attention_bias: bool = False,
|
||
use_attention_ffn: bool = True,
|
||
):
|
||
super().__init__()
|
||
resnets = []
|
||
attentions = []
|
||
|
||
self.has_cross_attention = True
|
||
self.num_attention_heads = num_attention_heads
|
||
|
||
if isinstance(transformer_layers_per_block, int):
|
||
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
||
|
||
for i in range(num_layers):
|
||
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
||
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
||
|
||
resnets.append(
|
||
ResnetBlock2D(
|
||
in_channels=resnet_in_channels + res_skip_channels,
|
||
out_channels=out_channels,
|
||
temb_channels=temb_channels,
|
||
eps=resnet_eps,
|
||
groups=resnet_groups,
|
||
dropout=dropout,
|
||
time_embedding_norm=resnet_time_scale_shift,
|
||
non_linearity=resnet_act_fn,
|
||
output_scale_factor=output_scale_factor,
|
||
pre_norm=resnet_pre_norm,
|
||
)
|
||
)
|
||
attentions.append(
|
||
MatryoshkaTransformer2DModel(
|
||
num_attention_heads,
|
||
out_channels // num_attention_heads,
|
||
in_channels=out_channels,
|
||
num_layers=transformer_layers_per_block[i],
|
||
cross_attention_dim=cross_attention_dim,
|
||
upcast_attention=upcast_attention,
|
||
use_attention_ffn=use_attention_ffn,
|
||
)
|
||
)
|
||
self.attentions = nn.ModuleList(attentions)
|
||
self.resnets = nn.ModuleList(resnets)
|
||
|
||
if add_upsample:
|
||
self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
|
||
else:
|
||
self.upsamplers = None
|
||
|
||
self.gradient_checkpointing = False
|
||
self.resolution_idx = resolution_idx
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
res_hidden_states_tuple: Tuple[torch.Tensor, ...],
|
||
temb: Optional[torch.Tensor] = None,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
upsample_size: Optional[int] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
) -> torch.Tensor:
|
||
if cross_attention_kwargs is not None:
|
||
if cross_attention_kwargs.get("scale", None) is not None:
|
||
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
||
|
||
is_freeu_enabled = (
|
||
getattr(self, "s1", None)
|
||
and getattr(self, "s2", None)
|
||
and getattr(self, "b1", None)
|
||
and getattr(self, "b2", None)
|
||
)
|
||
|
||
for resnet, attn in zip(self.resnets, self.attentions):
|
||
# pop res hidden states
|
||
res_hidden_states = res_hidden_states_tuple[-1]
|
||
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
||
|
||
# FreeU: Only operate on the first two stages
|
||
if is_freeu_enabled:
|
||
hidden_states, res_hidden_states = apply_freeu(
|
||
self.resolution_idx,
|
||
hidden_states,
|
||
res_hidden_states,
|
||
s1=self.s1,
|
||
s2=self.s2,
|
||
b1=self.b1,
|
||
b2=self.b2,
|
||
)
|
||
|
||
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
||
|
||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||
hidden_states = self._gradient_checkpointing_func(resnet, hidden_states, temb)
|
||
hidden_states = attn(
|
||
hidden_states,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
attention_mask=attention_mask,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
return_dict=False,
|
||
)[0]
|
||
else:
|
||
hidden_states = resnet(hidden_states, temb)
|
||
hidden_states = attn(
|
||
hidden_states,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
attention_mask=attention_mask,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
return_dict=False,
|
||
)[0]
|
||
|
||
if self.upsamplers is not None:
|
||
for upsampler in self.upsamplers:
|
||
hidden_states = upsampler(hidden_states, upsample_size)
|
||
|
||
return hidden_states
|
||
|
||
|
||
@dataclass
|
||
class MatryoshkaTransformer2DModelOutput(BaseOutput):
|
||
"""
|
||
The output of [`MatryoshkaTransformer2DModel`].
|
||
|
||
Args:
|
||
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`MatryoshkaTransformer2DModel`] is discrete):
|
||
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
||
distributions for the unnoised latent pixels.
|
||
"""
|
||
|
||
sample: "torch.Tensor" # noqa: F821
|
||
|
||
|
||
class MatryoshkaTransformer2DModel(LegacyModelMixin, LegacyConfigMixin):
|
||
_supports_gradient_checkpointing = True
|
||
_no_split_modules = ["MatryoshkaTransformerBlock"]
|
||
|
||
@register_to_config
|
||
def __init__(
|
||
self,
|
||
num_attention_heads: int = 16,
|
||
attention_head_dim: int = 88,
|
||
in_channels: Optional[int] = None,
|
||
num_layers: int = 1,
|
||
cross_attention_dim: Optional[int] = None,
|
||
upcast_attention: bool = False,
|
||
use_attention_ffn: bool = True,
|
||
):
|
||
super().__init__()
|
||
self.in_channels = self.config.num_attention_heads * self.config.attention_head_dim
|
||
self.gradient_checkpointing = False
|
||
|
||
self.transformer_blocks = nn.ModuleList(
|
||
[
|
||
MatryoshkaTransformerBlock(
|
||
self.in_channels,
|
||
self.config.num_attention_heads,
|
||
self.config.attention_head_dim,
|
||
cross_attention_dim=self.config.cross_attention_dim,
|
||
upcast_attention=self.config.upcast_attention,
|
||
use_attention_ffn=self.config.use_attention_ffn,
|
||
)
|
||
for _ in range(self.config.num_layers)
|
||
]
|
||
)
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
timestep: Optional[torch.LongTensor] = None,
|
||
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
||
class_labels: Optional[torch.LongTensor] = None,
|
||
cross_attention_kwargs: Dict[str, Any] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
return_dict: bool = True,
|
||
):
|
||
"""
|
||
The [`MatryoshkaTransformer2DModel`] forward method.
|
||
|
||
Args:
|
||
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.Tensor` of shape `(batch size, channel, height, width)` if continuous):
|
||
Input `hidden_states`.
|
||
encoder_hidden_states ( `torch.Tensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
||
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
||
self-attention.
|
||
timestep ( `torch.LongTensor`, *optional*):
|
||
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
||
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
||
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
||
`AdaLayerZeroNorm`.
|
||
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||
`self.processor` in
|
||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||
attention_mask ( `torch.Tensor`, *optional*):
|
||
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
||
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
||
negative values to the attention scores corresponding to "discard" tokens.
|
||
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
||
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
||
|
||
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
||
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
||
|
||
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
||
above. This bias will be added to the cross-attention scores.
|
||
return_dict (`bool`, *optional*, defaults to `True`):
|
||
Whether or not to return a [`~NestedUNet2DConditionOutput`] instead of a plain
|
||
tuple.
|
||
|
||
Returns:
|
||
If `return_dict` is True, an [`~MatryoshkaTransformer2DModelOutput`] is returned,
|
||
otherwise a `tuple` where the first element is the sample tensor.
|
||
"""
|
||
if cross_attention_kwargs is not None:
|
||
if cross_attention_kwargs.get("scale", None) is not None:
|
||
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
||
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
||
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
||
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
||
# expects mask of shape:
|
||
# [batch, key_tokens]
|
||
# adds singleton query_tokens dimension:
|
||
# [batch, 1, key_tokens]
|
||
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
||
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
||
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
||
if attention_mask is not None and attention_mask.ndim == 2:
|
||
# assume that mask is expressed as:
|
||
# (1 = keep, 0 = discard)
|
||
# convert mask into a bias that can be added to attention scores:
|
||
# (keep = +0, discard = -10000.0)
|
||
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
||
attention_mask = attention_mask.unsqueeze(1)
|
||
|
||
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
||
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
||
encoder_attention_mask = (1 - encoder_attention_mask.to(hidden_states.dtype)) * -10000.0
|
||
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
||
|
||
# Blocks
|
||
for block in self.transformer_blocks:
|
||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||
hidden_states = self._gradient_checkpointing_func(
|
||
block,
|
||
hidden_states,
|
||
attention_mask,
|
||
encoder_hidden_states,
|
||
encoder_attention_mask,
|
||
timestep,
|
||
cross_attention_kwargs,
|
||
class_labels,
|
||
)
|
||
else:
|
||
hidden_states = block(
|
||
hidden_states,
|
||
attention_mask=attention_mask,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
timestep=timestep,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
class_labels=class_labels,
|
||
)
|
||
|
||
# Output
|
||
output = hidden_states
|
||
|
||
if not return_dict:
|
||
return (output,)
|
||
|
||
return MatryoshkaTransformer2DModelOutput(sample=output)
|
||
|
||
|
||
class MatryoshkaTransformerBlock(nn.Module):
|
||
r"""
|
||
Matryoshka Transformer block.
|
||
|
||
Parameters:
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
dim: int,
|
||
num_attention_heads: int,
|
||
attention_head_dim: int,
|
||
cross_attention_dim: Optional[int] = None,
|
||
upcast_attention: bool = False,
|
||
use_attention_ffn: bool = True,
|
||
):
|
||
super().__init__()
|
||
self.dim = dim
|
||
self.num_attention_heads = num_attention_heads
|
||
self.attention_head_dim = attention_head_dim
|
||
self.cross_attention_dim = cross_attention_dim
|
||
|
||
# Define 3 blocks.
|
||
# 1. Self-Attn
|
||
self.attn1 = Attention(
|
||
query_dim=dim,
|
||
cross_attention_dim=None,
|
||
heads=num_attention_heads,
|
||
dim_head=attention_head_dim,
|
||
norm_num_groups=32,
|
||
bias=True,
|
||
upcast_attention=upcast_attention,
|
||
pre_only=True,
|
||
processor=MatryoshkaFusedAttnProcessor2_0(),
|
||
)
|
||
self.attn1.fuse_projections()
|
||
del self.attn1.to_q
|
||
del self.attn1.to_k
|
||
del self.attn1.to_v
|
||
|
||
# 2. Cross-Attn
|
||
if cross_attention_dim is not None and cross_attention_dim > 0:
|
||
self.attn2 = Attention(
|
||
query_dim=dim,
|
||
cross_attention_dim=cross_attention_dim,
|
||
cross_attention_norm="layer_norm",
|
||
heads=num_attention_heads,
|
||
dim_head=attention_head_dim,
|
||
bias=True,
|
||
upcast_attention=upcast_attention,
|
||
pre_only=True,
|
||
processor=MatryoshkaFusedAttnProcessor2_0(),
|
||
)
|
||
self.attn2.fuse_projections()
|
||
del self.attn2.to_q
|
||
del self.attn2.to_k
|
||
del self.attn2.to_v
|
||
|
||
self.proj_out = nn.Linear(dim, dim)
|
||
|
||
if use_attention_ffn:
|
||
# 3. Feed-forward
|
||
self.ff = MatryoshkaFeedForward(dim)
|
||
else:
|
||
self.ff = None
|
||
|
||
# let chunk size default to None
|
||
self._chunk_size = None
|
||
self._chunk_dim = 0
|
||
|
||
# Copied from diffusers.models.attention.BasicTransformerBlock.set_chunk_feed_forward
|
||
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
||
# Sets chunk feed-forward
|
||
self._chunk_size = chunk_size
|
||
self._chunk_dim = dim
|
||
|
||
def forward(
|
||
self,
|
||
hidden_states: torch.Tensor,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
timestep: Optional[torch.LongTensor] = None,
|
||
cross_attention_kwargs: Dict[str, Any] = None,
|
||
class_labels: Optional[torch.LongTensor] = None,
|
||
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
||
) -> torch.Tensor:
|
||
if cross_attention_kwargs is not None:
|
||
if cross_attention_kwargs.get("scale", None) is not None:
|
||
logger.warning("Passing `scale` to `cross_attention_kwargs` is deprecated. `scale` will be ignored.")
|
||
|
||
# 1. Self-Attention
|
||
batch_size, channels, *spatial_dims = hidden_states.shape
|
||
|
||
attn_output, query = self.attn1(
|
||
hidden_states,
|
||
# **cross_attention_kwargs,
|
||
)
|
||
|
||
# 2. Cross-Attention
|
||
if self.cross_attention_dim is not None and self.cross_attention_dim > 0:
|
||
attn_output_cond = self.attn2(
|
||
hidden_states,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
attention_mask=encoder_attention_mask,
|
||
self_attention_output=attn_output,
|
||
self_attention_query=query,
|
||
# **cross_attention_kwargs,
|
||
)
|
||
|
||
attn_output_cond = self.proj_out(attn_output_cond)
|
||
attn_output_cond = attn_output_cond.permute(0, 2, 1).reshape(batch_size, channels, *spatial_dims)
|
||
hidden_states = hidden_states + attn_output_cond
|
||
|
||
if self.ff is not None:
|
||
# 3. Feed-forward
|
||
if self._chunk_size is not None:
|
||
# "feed_forward_chunk_size" can be used to save memory
|
||
ff_output = _chunked_feed_forward(self.ff, hidden_states, self._chunk_dim, self._chunk_size)
|
||
else:
|
||
ff_output = self.ff(hidden_states)
|
||
|
||
hidden_states = ff_output + hidden_states
|
||
|
||
return hidden_states
|
||
|
||
|
||
class MatryoshkaFusedAttnProcessor2_0:
|
||
r"""
|
||
Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). It uses
|
||
fused projection layers. For self-attention modules, all projection matrices (i.e., query, key, value) are fused.
|
||
For cross-attention modules, key and value projection matrices are fused.
|
||
|
||
> [!WARNING]
|
||
> This API is currently 🧪 experimental in nature and can change in future.
|
||
"""
|
||
|
||
def __init__(self):
|
||
if not hasattr(F, "scaled_dot_product_attention"):
|
||
raise ImportError(
|
||
"MatryoshkaFusedAttnProcessor2_0 requires PyTorch 2.x, to use it. Please upgrade PyTorch to > 2.x."
|
||
)
|
||
|
||
def __call__(
|
||
self,
|
||
attn: Attention,
|
||
hidden_states: torch.Tensor,
|
||
encoder_hidden_states: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
temb: Optional[torch.Tensor] = None,
|
||
self_attention_query: Optional[torch.Tensor] = None,
|
||
self_attention_output: Optional[torch.Tensor] = None,
|
||
*args,
|
||
**kwargs,
|
||
) -> torch.Tensor:
|
||
if len(args) > 0 or kwargs.get("scale", None) is not None:
|
||
deprecation_message = "The `scale` argument is deprecated and will be ignored. Please remove it, as passing it will raise an error in the future. `scale` should directly be passed while calling the underlying pipeline component i.e., via `cross_attention_kwargs`."
|
||
deprecate("scale", "1.0.0", deprecation_message)
|
||
|
||
residual = hidden_states
|
||
if attn.spatial_norm is not None:
|
||
hidden_states = attn.spatial_norm(hidden_states, temb)
|
||
|
||
input_ndim = hidden_states.ndim
|
||
|
||
if attn.group_norm is not None:
|
||
hidden_states = attn.group_norm(hidden_states)
|
||
|
||
if input_ndim == 4:
|
||
batch_size, channel, height, width = hidden_states.shape
|
||
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2).contiguous()
|
||
|
||
if encoder_hidden_states is None:
|
||
qkv = attn.to_qkv(hidden_states)
|
||
split_size = qkv.shape[-1] // 3
|
||
query, key, value = torch.split(qkv, split_size, dim=-1)
|
||
else:
|
||
if attn.norm_cross:
|
||
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
||
if self_attention_query is not None:
|
||
query = self_attention_query
|
||
else:
|
||
query = attn.to_q(hidden_states)
|
||
|
||
kv = attn.to_kv(encoder_hidden_states)
|
||
split_size = kv.shape[-1] // 2
|
||
key, value = torch.split(kv, split_size, dim=-1)
|
||
|
||
if attn.norm_q is not None:
|
||
query = attn.norm_q(query)
|
||
if attn.norm_k is not None:
|
||
key = attn.norm_k(key)
|
||
|
||
inner_dim = key.shape[-1]
|
||
head_dim = inner_dim // attn.heads
|
||
|
||
if self_attention_output is None:
|
||
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
||
|
||
if attn.norm_q is not None:
|
||
query = attn.norm_q(query)
|
||
if attn.norm_k is not None:
|
||
key = attn.norm_k(key)
|
||
|
||
# the output of sdp = (batch, num_heads, seq_len, head_dim)
|
||
# TODO: add support for attn.scale when we move to Torch 2.1
|
||
hidden_states = F.scaled_dot_product_attention(
|
||
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
||
)
|
||
|
||
hidden_states = hidden_states.to(query.dtype)
|
||
|
||
if self_attention_output is not None:
|
||
hidden_states = hidden_states + self_attention_output
|
||
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
||
|
||
if attn.residual_connection:
|
||
hidden_states = hidden_states + residual
|
||
|
||
hidden_states = hidden_states / attn.rescale_output_factor
|
||
|
||
return hidden_states if self_attention_output is not None else (hidden_states, query)
|
||
|
||
|
||
class MatryoshkaFeedForward(nn.Module):
|
||
r"""
|
||
A feed-forward layer for the Matryoshka models.
|
||
|
||
Parameters:"""
|
||
|
||
def __init__(
|
||
self,
|
||
dim: int,
|
||
):
|
||
super().__init__()
|
||
|
||
self.group_norm = nn.GroupNorm(32, dim)
|
||
self.linear_gelu = GELU(dim, dim * 4)
|
||
self.linear_out = nn.Linear(dim * 4, dim)
|
||
|
||
def forward(self, x):
|
||
batch_size, channels, *spatial_dims = x.shape
|
||
x = self.group_norm(x)
|
||
x = x.view(batch_size, channels, -1).permute(0, 2, 1)
|
||
x = self.linear_out(self.linear_gelu(x))
|
||
x = x.permute(0, 2, 1).view(batch_size, channels, *spatial_dims)
|
||
return x
|
||
|
||
|
||
def get_down_block(
|
||
down_block_type: str,
|
||
num_layers: int,
|
||
in_channels: int,
|
||
out_channels: int,
|
||
temb_channels: int,
|
||
add_downsample: bool,
|
||
resnet_eps: float,
|
||
resnet_act_fn: str,
|
||
norm_type: str = "layer_norm",
|
||
transformer_layers_per_block: int = 1,
|
||
num_attention_heads: Optional[int] = None,
|
||
resnet_groups: Optional[int] = None,
|
||
cross_attention_dim: Optional[int] = None,
|
||
downsample_padding: Optional[int] = None,
|
||
dual_cross_attention: bool = False,
|
||
use_linear_projection: bool = False,
|
||
only_cross_attention: bool = False,
|
||
upcast_attention: bool = False,
|
||
resnet_time_scale_shift: str = "default",
|
||
attention_type: str = "default",
|
||
attention_pre_only: bool = False,
|
||
resnet_skip_time_act: bool = False,
|
||
resnet_out_scale_factor: float = 1.0,
|
||
cross_attention_norm: Optional[str] = None,
|
||
attention_head_dim: Optional[int] = None,
|
||
use_attention_ffn: bool = True,
|
||
downsample_type: Optional[str] = None,
|
||
dropout: float = 0.0,
|
||
):
|
||
# If attn head dim is not defined, we default it to the number of heads
|
||
if attention_head_dim is None:
|
||
logger.warning(
|
||
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
||
)
|
||
attention_head_dim = num_attention_heads
|
||
|
||
down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
|
||
if down_block_type == "DownBlock2D":
|
||
return DownBlock2D(
|
||
num_layers=num_layers,
|
||
in_channels=in_channels,
|
||
out_channels=out_channels,
|
||
temb_channels=temb_channels,
|
||
dropout=dropout,
|
||
add_downsample=add_downsample,
|
||
resnet_eps=resnet_eps,
|
||
resnet_act_fn=resnet_act_fn,
|
||
resnet_groups=resnet_groups,
|
||
downsample_padding=downsample_padding,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
)
|
||
elif down_block_type == "CrossAttnDownBlock2D":
|
||
if cross_attention_dim is None:
|
||
raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
|
||
return CrossAttnDownBlock2D(
|
||
num_layers=num_layers,
|
||
transformer_layers_per_block=transformer_layers_per_block,
|
||
in_channels=in_channels,
|
||
out_channels=out_channels,
|
||
temb_channels=temb_channels,
|
||
dropout=dropout,
|
||
add_downsample=add_downsample,
|
||
resnet_eps=resnet_eps,
|
||
resnet_act_fn=resnet_act_fn,
|
||
norm_type=norm_type,
|
||
resnet_groups=resnet_groups,
|
||
downsample_padding=downsample_padding,
|
||
cross_attention_dim=cross_attention_dim,
|
||
cross_attention_norm=cross_attention_norm,
|
||
num_attention_heads=num_attention_heads,
|
||
dual_cross_attention=dual_cross_attention,
|
||
use_linear_projection=use_linear_projection,
|
||
only_cross_attention=only_cross_attention,
|
||
upcast_attention=upcast_attention,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
attention_type=attention_type,
|
||
attention_pre_only=attention_pre_only,
|
||
use_attention_ffn=use_attention_ffn,
|
||
)
|
||
|
||
|
||
def get_mid_block(
|
||
mid_block_type: str,
|
||
temb_channels: int,
|
||
in_channels: int,
|
||
resnet_eps: float,
|
||
resnet_act_fn: str,
|
||
resnet_groups: int,
|
||
norm_type: str = "layer_norm",
|
||
output_scale_factor: float = 1.0,
|
||
transformer_layers_per_block: int = 1,
|
||
num_attention_heads: Optional[int] = None,
|
||
cross_attention_dim: Optional[int] = None,
|
||
dual_cross_attention: bool = False,
|
||
use_linear_projection: bool = False,
|
||
mid_block_only_cross_attention: bool = False,
|
||
upcast_attention: bool = False,
|
||
resnet_time_scale_shift: str = "default",
|
||
attention_type: str = "default",
|
||
attention_pre_only: bool = False,
|
||
resnet_skip_time_act: bool = False,
|
||
cross_attention_norm: Optional[str] = None,
|
||
attention_head_dim: Optional[int] = 1,
|
||
dropout: float = 0.0,
|
||
):
|
||
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
||
return UNetMidBlock2DCrossAttn(
|
||
transformer_layers_per_block=transformer_layers_per_block,
|
||
in_channels=in_channels,
|
||
temb_channels=temb_channels,
|
||
dropout=dropout,
|
||
resnet_eps=resnet_eps,
|
||
resnet_act_fn=resnet_act_fn,
|
||
norm_type=norm_type,
|
||
output_scale_factor=output_scale_factor,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
cross_attention_dim=cross_attention_dim,
|
||
cross_attention_norm=cross_attention_norm,
|
||
num_attention_heads=num_attention_heads,
|
||
resnet_groups=resnet_groups,
|
||
dual_cross_attention=dual_cross_attention,
|
||
use_linear_projection=use_linear_projection,
|
||
upcast_attention=upcast_attention,
|
||
attention_type=attention_type,
|
||
attention_pre_only=attention_pre_only,
|
||
)
|
||
|
||
|
||
def get_up_block(
|
||
up_block_type: str,
|
||
num_layers: int,
|
||
in_channels: int,
|
||
out_channels: int,
|
||
prev_output_channel: int,
|
||
temb_channels: int,
|
||
add_upsample: bool,
|
||
resnet_eps: float,
|
||
resnet_act_fn: str,
|
||
norm_type: str = "layer_norm",
|
||
resolution_idx: Optional[int] = None,
|
||
transformer_layers_per_block: int = 1,
|
||
num_attention_heads: Optional[int] = None,
|
||
resnet_groups: Optional[int] = None,
|
||
cross_attention_dim: Optional[int] = None,
|
||
dual_cross_attention: bool = False,
|
||
use_linear_projection: bool = False,
|
||
only_cross_attention: bool = False,
|
||
upcast_attention: bool = False,
|
||
resnet_time_scale_shift: str = "default",
|
||
attention_type: str = "default",
|
||
attention_pre_only: bool = False,
|
||
resnet_skip_time_act: bool = False,
|
||
resnet_out_scale_factor: float = 1.0,
|
||
cross_attention_norm: Optional[str] = None,
|
||
attention_head_dim: Optional[int] = None,
|
||
use_attention_ffn: bool = True,
|
||
upsample_type: Optional[str] = None,
|
||
dropout: float = 0.0,
|
||
) -> nn.Module:
|
||
# If attn head dim is not defined, we default it to the number of heads
|
||
if attention_head_dim is None:
|
||
logger.warning(
|
||
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
||
)
|
||
attention_head_dim = num_attention_heads
|
||
|
||
up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
||
if up_block_type == "UpBlock2D":
|
||
return UpBlock2D(
|
||
num_layers=num_layers,
|
||
in_channels=in_channels,
|
||
out_channels=out_channels,
|
||
prev_output_channel=prev_output_channel,
|
||
temb_channels=temb_channels,
|
||
resolution_idx=resolution_idx,
|
||
dropout=dropout,
|
||
add_upsample=add_upsample,
|
||
resnet_eps=resnet_eps,
|
||
resnet_act_fn=resnet_act_fn,
|
||
resnet_groups=resnet_groups,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
)
|
||
elif up_block_type == "CrossAttnUpBlock2D":
|
||
if cross_attention_dim is None:
|
||
raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
|
||
return CrossAttnUpBlock2D(
|
||
num_layers=num_layers,
|
||
transformer_layers_per_block=transformer_layers_per_block,
|
||
in_channels=in_channels,
|
||
out_channels=out_channels,
|
||
prev_output_channel=prev_output_channel,
|
||
temb_channels=temb_channels,
|
||
resolution_idx=resolution_idx,
|
||
dropout=dropout,
|
||
add_upsample=add_upsample,
|
||
resnet_eps=resnet_eps,
|
||
resnet_act_fn=resnet_act_fn,
|
||
norm_type=norm_type,
|
||
resnet_groups=resnet_groups,
|
||
cross_attention_dim=cross_attention_dim,
|
||
cross_attention_norm=cross_attention_norm,
|
||
num_attention_heads=num_attention_heads,
|
||
dual_cross_attention=dual_cross_attention,
|
||
use_linear_projection=use_linear_projection,
|
||
only_cross_attention=only_cross_attention,
|
||
upcast_attention=upcast_attention,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
attention_type=attention_type,
|
||
attention_pre_only=attention_pre_only,
|
||
use_attention_ffn=use_attention_ffn,
|
||
)
|
||
|
||
|
||
class MatryoshkaCombinedTimestepTextEmbedding(nn.Module):
|
||
def __init__(self, addition_time_embed_dim, cross_attention_dim, time_embed_dim, type):
|
||
super().__init__()
|
||
if type == "unet":
|
||
self.cond_emb = nn.Linear(cross_attention_dim, time_embed_dim, bias=False)
|
||
elif type == "nested_unet":
|
||
self.cond_emb = None
|
||
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos=False, downscale_freq_shift=0)
|
||
self.add_timestep_embedder = TimestepEmbedding(addition_time_embed_dim, time_embed_dim)
|
||
|
||
def forward(self, emb, encoder_hidden_states, added_cond_kwargs):
|
||
conditioning_mask = added_cond_kwargs.get("conditioning_mask", None)
|
||
masked_cross_attention = added_cond_kwargs.get("masked_cross_attention", False)
|
||
if self.cond_emb is not None and not added_cond_kwargs.get("from_nested", False):
|
||
if conditioning_mask is None:
|
||
y = encoder_hidden_states.mean(dim=1)
|
||
else:
|
||
y = (conditioning_mask.unsqueeze(-1) * encoder_hidden_states).sum(dim=1) / conditioning_mask.sum(
|
||
dim=1, keepdim=True
|
||
)
|
||
cond_emb = self.cond_emb(y)
|
||
else:
|
||
cond_emb = None
|
||
|
||
if not masked_cross_attention:
|
||
conditioning_mask = None
|
||
|
||
micro = added_cond_kwargs.get("micro_conditioning_scale", None)
|
||
if micro is not None:
|
||
temb = self.add_time_proj(torch.tensor([micro], device=emb.device, dtype=emb.dtype))
|
||
temb_micro_conditioning = self.add_timestep_embedder(temb.to(emb.dtype))
|
||
# if self.cond_emb is not None and not added_cond_kwargs.get("from_nested", False):
|
||
return temb_micro_conditioning, conditioning_mask, cond_emb
|
||
|
||
return None, conditioning_mask, cond_emb
|
||
|
||
|
||
@dataclass
|
||
class MatryoshkaUNet2DConditionOutput(BaseOutput):
|
||
"""
|
||
The output of [`MatryoshkaUNet2DConditionOutput`].
|
||
|
||
Args:
|
||
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
||
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
||
"""
|
||
|
||
sample: torch.Tensor = None
|
||
sample_inner: torch.Tensor = None
|
||
|
||
|
||
class MatryoshkaUNet2DConditionModel(
|
||
ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
|
||
):
|
||
r"""
|
||
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
||
shaped output.
|
||
|
||
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
||
for all models (such as downloading or saving).
|
||
|
||
Parameters:
|
||
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
||
Height and width of input/output sample.
|
||
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
||
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
||
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
||
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
||
Whether to flip the sin to cos in the time embedding.
|
||
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
||
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
||
The tuple of downsample blocks to use.
|
||
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
||
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
||
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
||
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
||
The tuple of upsample blocks to use.
|
||
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
||
Whether to include self-attention in the basic transformer blocks, see
|
||
[`~models.attention.BasicTransformerBlock`].
|
||
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
||
The tuple of output channels for each block.
|
||
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
||
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
||
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
||
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
||
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
||
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
||
If `None`, normalization and activation layers is skipped in post-processing.
|
||
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
||
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
||
The dimension of the cross attention features.
|
||
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
||
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
||
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
||
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
||
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
||
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
||
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
||
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
||
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
||
encoder_hid_dim (`int`, *optional*, defaults to None):
|
||
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
||
dimension to `cross_attention_dim`.
|
||
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
||
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
||
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
||
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
||
num_attention_heads (`int`, *optional*):
|
||
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
||
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
||
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
||
class_embed_type (`str`, *optional*, defaults to `None`):
|
||
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
||
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
||
addition_embed_type (`str`, *optional*, defaults to `None`):
|
||
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
||
"text". "text" will use the `TextTimeEmbedding` layer.
|
||
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
||
Dimension for the timestep embeddings.
|
||
num_class_embeds (`int`, *optional*, defaults to `None`):
|
||
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
||
class conditioning with `class_embed_type` equal to `None`.
|
||
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
||
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
||
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
||
An optional override for the dimension of the projected time embedding.
|
||
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
||
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
||
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
||
timestep_post_act (`str`, *optional*, defaults to `None`):
|
||
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
||
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
||
The dimension of `cond_proj` layer in the timestep embedding.
|
||
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
||
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
||
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
||
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
||
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
||
embeddings with the class embeddings.
|
||
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
||
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
||
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
||
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
||
otherwise.
|
||
"""
|
||
|
||
_supports_gradient_checkpointing = True
|
||
_no_split_modules = ["MatryoshkaTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
|
||
|
||
@register_to_config
|
||
def __init__(
|
||
self,
|
||
sample_size: Optional[int] = None,
|
||
in_channels: int = 3,
|
||
out_channels: int = 3,
|
||
center_input_sample: bool = False,
|
||
flip_sin_to_cos: bool = True,
|
||
freq_shift: int = 0,
|
||
down_block_types: Tuple[str] = (
|
||
"CrossAttnDownBlock2D",
|
||
"CrossAttnDownBlock2D",
|
||
"CrossAttnDownBlock2D",
|
||
"DownBlock2D",
|
||
),
|
||
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
||
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
||
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
||
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
||
layers_per_block: Union[int, Tuple[int]] = 2,
|
||
downsample_padding: int = 1,
|
||
mid_block_scale_factor: float = 1,
|
||
dropout: float = 0.0,
|
||
act_fn: str = "silu",
|
||
norm_type: str = "layer_norm",
|
||
norm_num_groups: Optional[int] = 32,
|
||
norm_eps: float = 1e-5,
|
||
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
||
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
||
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
||
encoder_hid_dim: Optional[int] = None,
|
||
encoder_hid_dim_type: Optional[str] = None,
|
||
attention_head_dim: Union[int, Tuple[int]] = 8,
|
||
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
||
dual_cross_attention: bool = False,
|
||
use_attention_ffn: bool = True,
|
||
use_linear_projection: bool = False,
|
||
class_embed_type: Optional[str] = None,
|
||
addition_embed_type: Optional[str] = None,
|
||
addition_time_embed_dim: Optional[int] = None,
|
||
num_class_embeds: Optional[int] = None,
|
||
upcast_attention: bool = False,
|
||
resnet_time_scale_shift: str = "default",
|
||
resnet_skip_time_act: bool = False,
|
||
resnet_out_scale_factor: float = 1.0,
|
||
time_embedding_type: str = "positional",
|
||
time_embedding_dim: Optional[int] = None,
|
||
time_embedding_act_fn: Optional[str] = None,
|
||
timestep_post_act: Optional[str] = None,
|
||
time_cond_proj_dim: Optional[int] = None,
|
||
conv_in_kernel: int = 3,
|
||
conv_out_kernel: int = 3,
|
||
projection_class_embeddings_input_dim: Optional[int] = None,
|
||
attention_type: str = "default",
|
||
attention_pre_only: bool = False,
|
||
masked_cross_attention: bool = False,
|
||
micro_conditioning_scale: int = None,
|
||
class_embeddings_concat: bool = False,
|
||
mid_block_only_cross_attention: Optional[bool] = None,
|
||
cross_attention_norm: Optional[str] = None,
|
||
addition_embed_type_num_heads: int = 64,
|
||
temporal_mode: bool = False,
|
||
temporal_spatial_ds: bool = False,
|
||
skip_cond_emb: bool = False,
|
||
nesting: Optional[int] = False,
|
||
):
|
||
super().__init__()
|
||
|
||
self.sample_size = sample_size
|
||
|
||
if num_attention_heads is not None:
|
||
raise ValueError(
|
||
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
||
)
|
||
|
||
# If `num_attention_heads` is not defined (which is the case for most models)
|
||
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
||
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
||
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
||
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
||
# which is why we correct for the naming here.
|
||
num_attention_heads = num_attention_heads or attention_head_dim
|
||
|
||
# Check inputs
|
||
self._check_config(
|
||
down_block_types=down_block_types,
|
||
up_block_types=up_block_types,
|
||
only_cross_attention=only_cross_attention,
|
||
block_out_channels=block_out_channels,
|
||
layers_per_block=layers_per_block,
|
||
cross_attention_dim=cross_attention_dim,
|
||
transformer_layers_per_block=transformer_layers_per_block,
|
||
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
||
attention_head_dim=attention_head_dim,
|
||
num_attention_heads=num_attention_heads,
|
||
)
|
||
|
||
# input
|
||
conv_in_padding = (conv_in_kernel - 1) // 2
|
||
self.conv_in = nn.Conv2d(
|
||
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
||
)
|
||
|
||
# time
|
||
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
||
time_embedding_type,
|
||
block_out_channels=block_out_channels,
|
||
flip_sin_to_cos=flip_sin_to_cos,
|
||
freq_shift=freq_shift,
|
||
time_embedding_dim=time_embedding_dim,
|
||
)
|
||
|
||
self.time_embedding = TimestepEmbedding(
|
||
time_embedding_dim // 4 if time_embedding_dim is not None else timestep_input_dim,
|
||
time_embed_dim,
|
||
act_fn=act_fn,
|
||
post_act_fn=timestep_post_act,
|
||
cond_proj_dim=time_cond_proj_dim,
|
||
)
|
||
|
||
self._set_encoder_hid_proj(
|
||
encoder_hid_dim_type,
|
||
cross_attention_dim=cross_attention_dim,
|
||
encoder_hid_dim=encoder_hid_dim,
|
||
)
|
||
|
||
# class embedding
|
||
self._set_class_embedding(
|
||
class_embed_type,
|
||
act_fn=act_fn,
|
||
num_class_embeds=num_class_embeds,
|
||
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
||
time_embed_dim=time_embed_dim,
|
||
timestep_input_dim=timestep_input_dim,
|
||
)
|
||
|
||
self._set_add_embedding(
|
||
addition_embed_type,
|
||
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
||
addition_time_embed_dim=timestep_input_dim,
|
||
cross_attention_dim=cross_attention_dim,
|
||
encoder_hid_dim=encoder_hid_dim,
|
||
flip_sin_to_cos=flip_sin_to_cos,
|
||
freq_shift=freq_shift,
|
||
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
||
time_embed_dim=time_embed_dim,
|
||
)
|
||
|
||
if time_embedding_act_fn is None:
|
||
self.time_embed_act = None
|
||
else:
|
||
self.time_embed_act = get_activation(time_embedding_act_fn)
|
||
|
||
self.down_blocks = nn.ModuleList([])
|
||
self.up_blocks = nn.ModuleList([])
|
||
|
||
if isinstance(only_cross_attention, bool):
|
||
if mid_block_only_cross_attention is None:
|
||
mid_block_only_cross_attention = only_cross_attention
|
||
|
||
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
||
|
||
if mid_block_only_cross_attention is None:
|
||
mid_block_only_cross_attention = False
|
||
|
||
if isinstance(num_attention_heads, int):
|
||
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
||
|
||
if isinstance(attention_head_dim, int):
|
||
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
||
|
||
if isinstance(cross_attention_dim, int):
|
||
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
||
|
||
if isinstance(layers_per_block, int):
|
||
layers_per_block = [layers_per_block] * len(down_block_types)
|
||
|
||
if isinstance(transformer_layers_per_block, int):
|
||
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
||
|
||
if class_embeddings_concat:
|
||
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
||
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
||
# regular time embeddings
|
||
blocks_time_embed_dim = time_embed_dim * 2
|
||
else:
|
||
blocks_time_embed_dim = time_embed_dim
|
||
|
||
# down
|
||
output_channel = block_out_channels[0]
|
||
for i, down_block_type in enumerate(down_block_types):
|
||
input_channel = output_channel
|
||
output_channel = block_out_channels[i]
|
||
is_final_block = i == len(block_out_channels) - 1
|
||
|
||
down_block = get_down_block(
|
||
down_block_type,
|
||
num_layers=layers_per_block[i],
|
||
transformer_layers_per_block=transformer_layers_per_block[i],
|
||
in_channels=input_channel,
|
||
out_channels=output_channel,
|
||
temb_channels=blocks_time_embed_dim,
|
||
add_downsample=not is_final_block,
|
||
resnet_eps=norm_eps,
|
||
resnet_act_fn=act_fn,
|
||
norm_type=norm_type,
|
||
resnet_groups=norm_num_groups,
|
||
cross_attention_dim=cross_attention_dim[i],
|
||
num_attention_heads=num_attention_heads[i],
|
||
downsample_padding=downsample_padding,
|
||
dual_cross_attention=dual_cross_attention,
|
||
use_linear_projection=use_linear_projection,
|
||
only_cross_attention=only_cross_attention[i],
|
||
upcast_attention=upcast_attention,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
attention_type=attention_type,
|
||
attention_pre_only=attention_pre_only,
|
||
resnet_skip_time_act=resnet_skip_time_act,
|
||
resnet_out_scale_factor=resnet_out_scale_factor,
|
||
cross_attention_norm=cross_attention_norm,
|
||
use_attention_ffn=use_attention_ffn,
|
||
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
||
dropout=dropout,
|
||
)
|
||
self.down_blocks.append(down_block)
|
||
|
||
# mid
|
||
self.mid_block = get_mid_block(
|
||
mid_block_type,
|
||
temb_channels=blocks_time_embed_dim,
|
||
in_channels=block_out_channels[-1],
|
||
resnet_eps=norm_eps,
|
||
resnet_act_fn=act_fn,
|
||
norm_type=norm_type,
|
||
resnet_groups=norm_num_groups,
|
||
output_scale_factor=mid_block_scale_factor,
|
||
transformer_layers_per_block=1,
|
||
num_attention_heads=num_attention_heads[-1],
|
||
cross_attention_dim=cross_attention_dim[-1],
|
||
dual_cross_attention=dual_cross_attention,
|
||
use_linear_projection=use_linear_projection,
|
||
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
||
upcast_attention=upcast_attention,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
attention_type=attention_type,
|
||
attention_pre_only=attention_pre_only,
|
||
resnet_skip_time_act=resnet_skip_time_act,
|
||
cross_attention_norm=cross_attention_norm,
|
||
attention_head_dim=attention_head_dim[-1],
|
||
dropout=dropout,
|
||
)
|
||
|
||
# count how many layers upsample the images
|
||
self.num_upsamplers = 0
|
||
|
||
# up
|
||
reversed_block_out_channels = list(reversed(block_out_channels))
|
||
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
||
reversed_layers_per_block = list(reversed(layers_per_block))
|
||
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
||
reversed_transformer_layers_per_block = (
|
||
list(reversed(transformer_layers_per_block))
|
||
if reverse_transformer_layers_per_block is None
|
||
else reverse_transformer_layers_per_block
|
||
)
|
||
only_cross_attention = list(reversed(only_cross_attention))
|
||
|
||
output_channel = reversed_block_out_channels[0]
|
||
for i, up_block_type in enumerate(up_block_types):
|
||
is_final_block = i == len(block_out_channels) - 1
|
||
|
||
prev_output_channel = output_channel
|
||
output_channel = reversed_block_out_channels[i]
|
||
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
||
|
||
# add upsample block for all BUT final layer
|
||
if not is_final_block:
|
||
add_upsample = True
|
||
self.num_upsamplers += 1
|
||
else:
|
||
add_upsample = False
|
||
|
||
up_block = get_up_block(
|
||
up_block_type,
|
||
num_layers=reversed_layers_per_block[i] + 1,
|
||
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
||
in_channels=input_channel,
|
||
out_channels=output_channel,
|
||
prev_output_channel=prev_output_channel,
|
||
temb_channels=blocks_time_embed_dim,
|
||
add_upsample=add_upsample,
|
||
resnet_eps=norm_eps,
|
||
resnet_act_fn=act_fn,
|
||
norm_type=norm_type,
|
||
resolution_idx=i,
|
||
resnet_groups=norm_num_groups,
|
||
cross_attention_dim=reversed_cross_attention_dim[i],
|
||
num_attention_heads=reversed_num_attention_heads[i],
|
||
dual_cross_attention=dual_cross_attention,
|
||
use_linear_projection=use_linear_projection,
|
||
only_cross_attention=only_cross_attention[i],
|
||
upcast_attention=upcast_attention,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
attention_type=attention_type,
|
||
attention_pre_only=attention_pre_only,
|
||
resnet_skip_time_act=resnet_skip_time_act,
|
||
resnet_out_scale_factor=resnet_out_scale_factor,
|
||
cross_attention_norm=cross_attention_norm,
|
||
use_attention_ffn=use_attention_ffn,
|
||
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
||
dropout=dropout,
|
||
)
|
||
self.up_blocks.append(up_block)
|
||
|
||
# out
|
||
if norm_num_groups is not None:
|
||
self.conv_norm_out = nn.GroupNorm(
|
||
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
||
)
|
||
|
||
self.conv_act = get_activation(act_fn)
|
||
|
||
else:
|
||
self.conv_norm_out = None
|
||
self.conv_act = None
|
||
|
||
conv_out_padding = (conv_out_kernel - 1) // 2
|
||
self.conv_out = nn.Conv2d(
|
||
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
||
)
|
||
|
||
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
||
|
||
self.is_temporal = []
|
||
|
||
def _check_config(
|
||
self,
|
||
down_block_types: Tuple[str],
|
||
up_block_types: Tuple[str],
|
||
only_cross_attention: Union[bool, Tuple[bool]],
|
||
block_out_channels: Tuple[int],
|
||
layers_per_block: Union[int, Tuple[int]],
|
||
cross_attention_dim: Union[int, Tuple[int]],
|
||
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
||
reverse_transformer_layers_per_block: bool,
|
||
attention_head_dim: int,
|
||
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
||
):
|
||
if len(down_block_types) != len(up_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
||
)
|
||
|
||
if len(block_out_channels) != len(down_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
||
)
|
||
|
||
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
||
)
|
||
|
||
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
||
)
|
||
|
||
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
||
)
|
||
|
||
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
||
)
|
||
|
||
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
||
raise ValueError(
|
||
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
||
)
|
||
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
||
for layer_number_per_block in transformer_layers_per_block:
|
||
if isinstance(layer_number_per_block, list):
|
||
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
||
|
||
def _set_time_proj(
|
||
self,
|
||
time_embedding_type: str,
|
||
block_out_channels: int,
|
||
flip_sin_to_cos: bool,
|
||
freq_shift: float,
|
||
time_embedding_dim: int,
|
||
) -> Tuple[int, int]:
|
||
if time_embedding_type == "fourier":
|
||
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
||
if time_embed_dim % 2 != 0:
|
||
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
||
self.time_proj = GaussianFourierProjection(
|
||
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
||
)
|
||
timestep_input_dim = time_embed_dim
|
||
elif time_embedding_type == "positional":
|
||
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
||
|
||
if self.model_type == "unet":
|
||
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
||
elif self.model_type == "nested_unet" and self.config.micro_conditioning_scale == 256:
|
||
self.time_proj = Timesteps(block_out_channels[0] * 4, flip_sin_to_cos, freq_shift)
|
||
elif self.model_type == "nested_unet" and self.config.micro_conditioning_scale == 1024:
|
||
self.time_proj = Timesteps(block_out_channels[0] * 4 * 2, flip_sin_to_cos, freq_shift)
|
||
timestep_input_dim = block_out_channels[0]
|
||
else:
|
||
raise ValueError(
|
||
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
||
)
|
||
|
||
return time_embed_dim, timestep_input_dim
|
||
|
||
def _set_encoder_hid_proj(
|
||
self,
|
||
encoder_hid_dim_type: Optional[str],
|
||
cross_attention_dim: Union[int, Tuple[int]],
|
||
encoder_hid_dim: Optional[int],
|
||
):
|
||
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
||
encoder_hid_dim_type = "text_proj"
|
||
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
||
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
||
|
||
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
||
raise ValueError(
|
||
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
||
)
|
||
|
||
if encoder_hid_dim_type == "text_proj":
|
||
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
||
elif encoder_hid_dim_type == "text_image_proj":
|
||
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
||
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
||
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
||
self.encoder_hid_proj = TextImageProjection(
|
||
text_embed_dim=encoder_hid_dim,
|
||
image_embed_dim=cross_attention_dim,
|
||
cross_attention_dim=cross_attention_dim,
|
||
)
|
||
elif encoder_hid_dim_type == "image_proj":
|
||
# Kandinsky 2.2
|
||
self.encoder_hid_proj = ImageProjection(
|
||
image_embed_dim=encoder_hid_dim,
|
||
cross_attention_dim=cross_attention_dim,
|
||
)
|
||
elif encoder_hid_dim_type is not None:
|
||
raise ValueError(
|
||
f"`encoder_hid_dim_type`: {encoder_hid_dim_type} must be None, 'text_proj', 'text_image_proj', or 'image_proj'."
|
||
)
|
||
else:
|
||
self.encoder_hid_proj = None
|
||
|
||
def _set_class_embedding(
|
||
self,
|
||
class_embed_type: Optional[str],
|
||
act_fn: str,
|
||
num_class_embeds: Optional[int],
|
||
projection_class_embeddings_input_dim: Optional[int],
|
||
time_embed_dim: int,
|
||
timestep_input_dim: int,
|
||
):
|
||
if class_embed_type is None and num_class_embeds is not None:
|
||
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
||
elif class_embed_type == "timestep":
|
||
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
||
elif class_embed_type == "identity":
|
||
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
||
elif class_embed_type == "projection":
|
||
if projection_class_embeddings_input_dim is None:
|
||
raise ValueError(
|
||
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
||
)
|
||
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
||
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
||
# 2. it projects from an arbitrary input dimension.
|
||
#
|
||
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
||
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
||
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
||
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||
elif class_embed_type == "simple_projection":
|
||
if projection_class_embeddings_input_dim is None:
|
||
raise ValueError(
|
||
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
||
)
|
||
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
||
else:
|
||
self.class_embedding = None
|
||
|
||
def _set_add_embedding(
|
||
self,
|
||
addition_embed_type: str,
|
||
addition_embed_type_num_heads: int,
|
||
addition_time_embed_dim: Optional[int],
|
||
flip_sin_to_cos: bool,
|
||
freq_shift: float,
|
||
cross_attention_dim: Optional[int],
|
||
encoder_hid_dim: Optional[int],
|
||
projection_class_embeddings_input_dim: Optional[int],
|
||
time_embed_dim: int,
|
||
):
|
||
if addition_embed_type == "text":
|
||
if encoder_hid_dim is not None:
|
||
text_time_embedding_from_dim = encoder_hid_dim
|
||
else:
|
||
text_time_embedding_from_dim = cross_attention_dim
|
||
|
||
self.add_embedding = TextTimeEmbedding(
|
||
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
||
)
|
||
elif addition_embed_type == "matryoshka":
|
||
self.add_embedding = MatryoshkaCombinedTimestepTextEmbedding(
|
||
self.config.time_embedding_dim // 4
|
||
if self.config.time_embedding_dim is not None
|
||
else addition_time_embed_dim,
|
||
cross_attention_dim,
|
||
time_embed_dim,
|
||
self.model_type, # if not self.config.nesting else "inner_" + self.model_type,
|
||
)
|
||
elif addition_embed_type == "text_image":
|
||
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
||
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
||
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
||
self.add_embedding = TextImageTimeEmbedding(
|
||
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
||
)
|
||
elif addition_embed_type == "text_time":
|
||
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
||
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
||
elif addition_embed_type == "image":
|
||
# Kandinsky 2.2
|
||
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
||
elif addition_embed_type == "image_hint":
|
||
# Kandinsky 2.2 ControlNet
|
||
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
||
elif addition_embed_type is not None:
|
||
raise ValueError(
|
||
f"`addition_embed_type`: {addition_embed_type} must be None, 'text', 'text_image', 'text_time', 'image', or 'image_hint'."
|
||
)
|
||
|
||
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
||
if attention_type in ["gated", "gated-text-image"]:
|
||
positive_len = 768
|
||
if isinstance(cross_attention_dim, int):
|
||
positive_len = cross_attention_dim
|
||
elif isinstance(cross_attention_dim, (list, tuple)):
|
||
positive_len = cross_attention_dim[0]
|
||
|
||
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
||
self.position_net = GLIGENTextBoundingboxProjection(
|
||
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
||
)
|
||
|
||
@property
|
||
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
||
r"""
|
||
Returns:
|
||
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
||
indexed by its weight name.
|
||
"""
|
||
# set recursively
|
||
processors = {}
|
||
|
||
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
||
if hasattr(module, "get_processor"):
|
||
processors[f"{name}.processor"] = module.get_processor()
|
||
|
||
for sub_name, child in module.named_children():
|
||
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
||
|
||
return processors
|
||
|
||
for name, module in self.named_children():
|
||
fn_recursive_add_processors(name, module, processors)
|
||
|
||
return processors
|
||
|
||
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
||
r"""
|
||
Sets the attention processor to use to compute attention.
|
||
|
||
Parameters:
|
||
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
||
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
||
for **all** `Attention` layers.
|
||
|
||
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
||
processor. This is strongly recommended when setting trainable attention processors.
|
||
|
||
"""
|
||
count = len(self.attn_processors.keys())
|
||
|
||
if isinstance(processor, dict) and len(processor) != count:
|
||
raise ValueError(
|
||
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
||
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
||
)
|
||
|
||
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
||
if hasattr(module, "set_processor"):
|
||
if not isinstance(processor, dict):
|
||
module.set_processor(processor)
|
||
else:
|
||
module.set_processor(processor.pop(f"{name}.processor"))
|
||
|
||
for sub_name, child in module.named_children():
|
||
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
||
|
||
for name, module in self.named_children():
|
||
fn_recursive_attn_processor(name, module, processor)
|
||
|
||
def set_default_attn_processor(self):
|
||
"""
|
||
Disables custom attention processors and sets the default attention implementation.
|
||
"""
|
||
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
||
processor = AttnAddedKVProcessor()
|
||
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
||
processor = AttnProcessor()
|
||
else:
|
||
raise ValueError(
|
||
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
||
)
|
||
|
||
self.set_attn_processor(processor)
|
||
|
||
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
||
r"""
|
||
Enable sliced attention computation.
|
||
|
||
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
||
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
||
|
||
Args:
|
||
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
||
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
||
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
||
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
||
must be a multiple of `slice_size`.
|
||
"""
|
||
sliceable_head_dims = []
|
||
|
||
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
||
if hasattr(module, "set_attention_slice"):
|
||
sliceable_head_dims.append(module.sliceable_head_dim)
|
||
|
||
for child in module.children():
|
||
fn_recursive_retrieve_sliceable_dims(child)
|
||
|
||
# retrieve number of attention layers
|
||
for module in self.children():
|
||
fn_recursive_retrieve_sliceable_dims(module)
|
||
|
||
num_sliceable_layers = len(sliceable_head_dims)
|
||
|
||
if slice_size == "auto":
|
||
# half the attention head size is usually a good trade-off between
|
||
# speed and memory
|
||
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
||
elif slice_size == "max":
|
||
# make smallest slice possible
|
||
slice_size = num_sliceable_layers * [1]
|
||
|
||
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
||
|
||
if len(slice_size) != len(sliceable_head_dims):
|
||
raise ValueError(
|
||
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
||
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
||
)
|
||
|
||
for i in range(len(slice_size)):
|
||
size = slice_size[i]
|
||
dim = sliceable_head_dims[i]
|
||
if size is not None and size > dim:
|
||
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
||
|
||
# Recursively walk through all the children.
|
||
# Any children which exposes the set_attention_slice method
|
||
# gets the message
|
||
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
||
if hasattr(module, "set_attention_slice"):
|
||
module.set_attention_slice(slice_size.pop())
|
||
|
||
for child in module.children():
|
||
fn_recursive_set_attention_slice(child, slice_size)
|
||
|
||
reversed_slice_size = list(reversed(slice_size))
|
||
for module in self.children():
|
||
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
||
|
||
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
||
r"""Enables the FreeU mechanism from https://huggingface.co/papers/2309.11497.
|
||
|
||
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
||
|
||
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
||
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
||
|
||
Args:
|
||
s1 (`float`):
|
||
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
||
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
||
s2 (`float`):
|
||
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
||
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
||
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
||
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
||
"""
|
||
for i, upsample_block in enumerate(self.up_blocks):
|
||
setattr(upsample_block, "s1", s1)
|
||
setattr(upsample_block, "s2", s2)
|
||
setattr(upsample_block, "b1", b1)
|
||
setattr(upsample_block, "b2", b2)
|
||
|
||
def disable_freeu(self):
|
||
"""Disables the FreeU mechanism."""
|
||
freeu_keys = {"s1", "s2", "b1", "b2"}
|
||
for i, upsample_block in enumerate(self.up_blocks):
|
||
for k in freeu_keys:
|
||
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
||
setattr(upsample_block, k, None)
|
||
|
||
def fuse_qkv_projections(self):
|
||
"""
|
||
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
||
are fused. For cross-attention modules, key and value projection matrices are fused.
|
||
|
||
> [!WARNING]
|
||
> This API is 🧪 experimental.
|
||
"""
|
||
self.original_attn_processors = None
|
||
|
||
for _, attn_processor in self.attn_processors.items():
|
||
if "Added" in str(attn_processor.__class__.__name__):
|
||
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
||
|
||
self.original_attn_processors = self.attn_processors
|
||
|
||
for module in self.modules():
|
||
if isinstance(module, Attention):
|
||
module.fuse_projections(fuse=True)
|
||
|
||
self.set_attn_processor(FusedAttnProcessor2_0())
|
||
|
||
def unfuse_qkv_projections(self):
|
||
"""Disables the fused QKV projection if enabled.
|
||
|
||
> [!WARNING]
|
||
> This API is 🧪 experimental.
|
||
|
||
"""
|
||
if self.original_attn_processors is not None:
|
||
self.set_attn_processor(self.original_attn_processors)
|
||
|
||
def get_time_embed(
|
||
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
||
) -> Optional[torch.Tensor]:
|
||
timesteps = timestep
|
||
if not torch.is_tensor(timesteps):
|
||
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
||
# This would be a good case for the `match` statement (Python 3.10+)
|
||
is_mps = sample.device.type == "mps"
|
||
is_npu = sample.device.type == "npu"
|
||
if isinstance(timestep, float):
|
||
dtype = torch.float32 if (is_mps or is_npu) else torch.float64
|
||
else:
|
||
dtype = torch.int32 if (is_mps or is_npu) else torch.int64
|
||
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
||
elif len(timesteps.shape) == 0:
|
||
timesteps = timesteps[None].to(sample.device)
|
||
|
||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||
timesteps = timesteps.expand(sample.shape[0])
|
||
|
||
t_emb = self.time_proj(timesteps)
|
||
# `Timesteps` does not contain any weights and will always return f32 tensors
|
||
# but time_embedding might actually be running in fp16. so we need to cast here.
|
||
# there might be better ways to encapsulate this.
|
||
t_emb = t_emb.to(dtype=sample.dtype)
|
||
return t_emb
|
||
|
||
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
||
class_emb = None
|
||
if self.class_embedding is not None:
|
||
if class_labels is None:
|
||
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
||
|
||
if self.config.class_embed_type == "timestep":
|
||
class_labels = self.time_proj(class_labels)
|
||
|
||
# `Timesteps` does not contain any weights and will always return f32 tensors
|
||
# there might be better ways to encapsulate this.
|
||
class_labels = class_labels.to(dtype=sample.dtype)
|
||
|
||
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
||
return class_emb
|
||
|
||
def get_aug_embed(
|
||
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
||
) -> Optional[torch.Tensor]:
|
||
aug_emb = None
|
||
if self.config.addition_embed_type == "text":
|
||
aug_emb = self.add_embedding(encoder_hidden_states)
|
||
elif self.config.addition_embed_type == "matryoshka":
|
||
aug_emb = self.add_embedding(emb, encoder_hidden_states, added_cond_kwargs)
|
||
elif self.config.addition_embed_type == "text_image":
|
||
# Kandinsky 2.1 - style
|
||
if "image_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
||
)
|
||
|
||
image_embs = added_cond_kwargs.get("image_embeds")
|
||
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
||
aug_emb = self.add_embedding(text_embs, image_embs)
|
||
elif self.config.addition_embed_type == "text_time":
|
||
# SDXL - style
|
||
if "text_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
||
)
|
||
text_embeds = added_cond_kwargs.get("text_embeds")
|
||
if "time_ids" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
||
)
|
||
time_ids = added_cond_kwargs.get("time_ids")
|
||
time_embeds = self.add_time_proj(time_ids.flatten())
|
||
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
||
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
||
add_embeds = add_embeds.to(emb.dtype)
|
||
aug_emb = self.add_embedding(add_embeds)
|
||
elif self.config.addition_embed_type == "image":
|
||
# Kandinsky 2.2 - style
|
||
if "image_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
||
)
|
||
image_embs = added_cond_kwargs.get("image_embeds")
|
||
aug_emb = self.add_embedding(image_embs)
|
||
elif self.config.addition_embed_type == "image_hint":
|
||
# Kandinsky 2.2 ControlNet - style
|
||
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
||
)
|
||
image_embs = added_cond_kwargs.get("image_embeds")
|
||
hint = added_cond_kwargs.get("hint")
|
||
aug_emb = self.add_embedding(image_embs, hint)
|
||
return aug_emb
|
||
|
||
def process_encoder_hidden_states(
|
||
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
||
) -> torch.Tensor:
|
||
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
||
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
||
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
||
# Kandinsky 2.1 - style
|
||
if "image_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
||
)
|
||
|
||
image_embeds = added_cond_kwargs.get("image_embeds")
|
||
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
||
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
||
# Kandinsky 2.2 - style
|
||
if "image_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
||
)
|
||
image_embeds = added_cond_kwargs.get("image_embeds")
|
||
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
||
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
||
if "image_embeds" not in added_cond_kwargs:
|
||
raise ValueError(
|
||
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
||
)
|
||
|
||
if hasattr(self, "text_encoder_hid_proj") and self.text_encoder_hid_proj is not None:
|
||
encoder_hidden_states = self.text_encoder_hid_proj(encoder_hidden_states)
|
||
|
||
image_embeds = added_cond_kwargs.get("image_embeds")
|
||
image_embeds = self.encoder_hid_proj(image_embeds)
|
||
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
||
return encoder_hidden_states
|
||
|
||
@property
|
||
def model_type(self) -> str:
|
||
return "unet"
|
||
|
||
def forward(
|
||
self,
|
||
sample: torch.Tensor,
|
||
timestep: Union[torch.Tensor, float, int],
|
||
encoder_hidden_states: torch.Tensor,
|
||
cond_emb: Optional[torch.Tensor] = None,
|
||
class_labels: Optional[torch.Tensor] = None,
|
||
timestep_cond: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
||
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
||
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
||
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
return_dict: bool = True,
|
||
from_nested: bool = False,
|
||
) -> Union[MatryoshkaUNet2DConditionOutput, Tuple]:
|
||
r"""
|
||
The [`NestedUNet2DConditionModel`] forward method.
|
||
|
||
Args:
|
||
sample (`torch.Tensor`):
|
||
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
||
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
||
encoder_hidden_states (`torch.Tensor`):
|
||
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
||
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
||
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
||
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
||
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
||
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
||
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
||
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
||
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
||
negative values to the attention scores corresponding to "discard" tokens.
|
||
cross_attention_kwargs (`dict`, *optional*):
|
||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||
`self.processor` in
|
||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||
added_cond_kwargs: (`dict`, *optional*):
|
||
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
||
are passed along to the UNet blocks.
|
||
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
||
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
||
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
||
A tensor that if specified is added to the residual of the middle unet block.
|
||
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
||
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
||
encoder_attention_mask (`torch.Tensor`):
|
||
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
||
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
||
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
||
return_dict (`bool`, *optional*, defaults to `True`):
|
||
Whether or not to return a [`~NestedUNet2DConditionOutput`] instead of a plain
|
||
tuple.
|
||
|
||
Returns:
|
||
[`~NestedUNet2DConditionOutput`] or `tuple`:
|
||
If `return_dict` is True, an [`~NestedUNet2DConditionOutput`] is returned,
|
||
otherwise a `tuple` is returned where the first element is the sample tensor.
|
||
"""
|
||
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
||
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
||
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
||
# on the fly if necessary.
|
||
default_overall_up_factor = 2**self.num_upsamplers
|
||
|
||
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
||
forward_upsample_size = False
|
||
upsample_size = None
|
||
|
||
if self.config.nesting:
|
||
sample, sample_feat = sample
|
||
if isinstance(sample, list) and len(sample) == 1:
|
||
sample = sample[0]
|
||
|
||
for dim in sample.shape[-2:]:
|
||
if dim % default_overall_up_factor != 0:
|
||
# Forward upsample size to force interpolation output size.
|
||
forward_upsample_size = True
|
||
break
|
||
|
||
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
||
# expects mask of shape:
|
||
# [batch, key_tokens]
|
||
# adds singleton query_tokens dimension:
|
||
# [batch, 1, key_tokens]
|
||
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
||
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
||
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
||
if attention_mask is not None:
|
||
# assume that mask is expressed as:
|
||
# (1 = keep, 0 = discard)
|
||
# convert mask into a bias that can be added to attention scores:
|
||
# (keep = +0, discard = -10000.0)
|
||
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
||
attention_mask = attention_mask.unsqueeze(1)
|
||
|
||
# 0. center input if necessary
|
||
if self.config.center_input_sample:
|
||
sample = 2 * sample - 1.0
|
||
|
||
# 1. time
|
||
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
||
emb = self.time_embedding(t_emb, timestep_cond)
|
||
|
||
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
||
if class_emb is not None:
|
||
if self.config.class_embeddings_concat:
|
||
emb = torch.cat([emb, class_emb], dim=-1)
|
||
else:
|
||
emb = emb + class_emb
|
||
|
||
added_cond_kwargs = added_cond_kwargs or {}
|
||
added_cond_kwargs["masked_cross_attention"] = self.config.masked_cross_attention
|
||
added_cond_kwargs["micro_conditioning_scale"] = self.config.micro_conditioning_scale
|
||
added_cond_kwargs["from_nested"] = from_nested
|
||
added_cond_kwargs["conditioning_mask"] = encoder_attention_mask
|
||
|
||
if not from_nested:
|
||
encoder_hidden_states = self.process_encoder_hidden_states(
|
||
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
|
||
aug_emb, encoder_attention_mask, cond_emb = self.get_aug_embed(
|
||
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
else:
|
||
aug_emb, encoder_attention_mask, _ = self.get_aug_embed(
|
||
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
|
||
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
||
if encoder_attention_mask is not None:
|
||
encoder_attention_mask = (1 - encoder_attention_mask.to(sample[0][0].dtype)) * -10000.0
|
||
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
||
|
||
if self.config.addition_embed_type == "image_hint":
|
||
aug_emb, hint = aug_emb
|
||
sample = torch.cat([sample, hint], dim=1)
|
||
|
||
emb = emb + aug_emb + cond_emb if aug_emb is not None else emb
|
||
|
||
if self.time_embed_act is not None:
|
||
emb = self.time_embed_act(emb)
|
||
|
||
# 2. pre-process
|
||
sample = self.conv_in(sample)
|
||
if self.config.nesting:
|
||
sample = sample + sample_feat
|
||
|
||
# 2.5 GLIGEN position net
|
||
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
||
cross_attention_kwargs = cross_attention_kwargs.copy()
|
||
gligen_args = cross_attention_kwargs.pop("gligen")
|
||
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
||
|
||
# 3. down
|
||
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
||
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
||
if cross_attention_kwargs is not None:
|
||
cross_attention_kwargs = cross_attention_kwargs.copy()
|
||
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
||
else:
|
||
lora_scale = 1.0
|
||
|
||
if USE_PEFT_BACKEND:
|
||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||
scale_lora_layers(self, lora_scale)
|
||
|
||
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
||
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
||
is_adapter = down_intrablock_additional_residuals is not None
|
||
# maintain backward compatibility for legacy usage, where
|
||
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
||
# but can only use one or the other
|
||
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
||
deprecate(
|
||
"T2I should not use down_block_additional_residuals",
|
||
"1.3.0",
|
||
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
||
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
||
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
||
standard_warn=False,
|
||
)
|
||
down_intrablock_additional_residuals = down_block_additional_residuals
|
||
is_adapter = True
|
||
|
||
down_block_res_samples = (sample,)
|
||
for downsample_block in self.down_blocks:
|
||
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
||
# For t2i-adapter CrossAttnDownBlock2D
|
||
additional_residuals = {}
|
||
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
||
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
||
|
||
sample, res_samples = downsample_block(
|
||
hidden_states=sample,
|
||
temb=emb,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
attention_mask=attention_mask,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
**additional_residuals,
|
||
)
|
||
else:
|
||
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
||
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
||
sample += down_intrablock_additional_residuals.pop(0)
|
||
|
||
down_block_res_samples += res_samples
|
||
|
||
if is_controlnet:
|
||
new_down_block_res_samples = ()
|
||
|
||
for down_block_res_sample, down_block_additional_residual in zip(
|
||
down_block_res_samples, down_block_additional_residuals
|
||
):
|
||
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
||
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
||
|
||
down_block_res_samples = new_down_block_res_samples
|
||
|
||
# 4. mid
|
||
if self.mid_block is not None:
|
||
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
||
sample = self.mid_block(
|
||
sample,
|
||
emb,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
attention_mask=attention_mask,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
)
|
||
else:
|
||
sample = self.mid_block(sample, emb)
|
||
|
||
# To support T2I-Adapter-XL
|
||
if (
|
||
is_adapter
|
||
and len(down_intrablock_additional_residuals) > 0
|
||
and sample.shape == down_intrablock_additional_residuals[0].shape
|
||
):
|
||
sample += down_intrablock_additional_residuals.pop(0)
|
||
|
||
if is_controlnet:
|
||
sample = sample + mid_block_additional_residual
|
||
|
||
# 5. up
|
||
for i, upsample_block in enumerate(self.up_blocks):
|
||
is_final_block = i == len(self.up_blocks) - 1
|
||
|
||
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
||
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
||
|
||
# if we have not reached the final block and need to forward the
|
||
# upsample size, we do it here
|
||
if not is_final_block and forward_upsample_size:
|
||
upsample_size = down_block_res_samples[-1].shape[2:]
|
||
|
||
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
||
sample = upsample_block(
|
||
hidden_states=sample,
|
||
temb=emb,
|
||
res_hidden_states_tuple=res_samples,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
upsample_size=upsample_size,
|
||
attention_mask=attention_mask,
|
||
encoder_attention_mask=encoder_attention_mask,
|
||
)
|
||
else:
|
||
sample = upsample_block(
|
||
hidden_states=sample,
|
||
temb=emb,
|
||
res_hidden_states_tuple=res_samples,
|
||
upsample_size=upsample_size,
|
||
)
|
||
|
||
sample_inner = sample
|
||
|
||
# 6. post-process
|
||
if self.conv_norm_out:
|
||
sample = self.conv_norm_out(sample_inner)
|
||
sample = self.conv_act(sample)
|
||
sample = self.conv_out(sample)
|
||
|
||
if USE_PEFT_BACKEND:
|
||
# remove `lora_scale` from each PEFT layer
|
||
unscale_lora_layers(self, lora_scale)
|
||
|
||
if not return_dict:
|
||
return (sample,)
|
||
|
||
if self.config.nesting:
|
||
return MatryoshkaUNet2DConditionOutput(sample=sample, sample_inner=sample_inner)
|
||
|
||
return MatryoshkaUNet2DConditionOutput(sample=sample)
|
||
|
||
|
||
class NestedUNet2DConditionOutput(BaseOutput):
|
||
"""
|
||
Output type for the [`NestedUNet2DConditionModel`] model.
|
||
"""
|
||
|
||
sample: list = None
|
||
sample_inner: torch.Tensor = None
|
||
|
||
|
||
class NestedUNet2DConditionModel(MatryoshkaUNet2DConditionModel):
|
||
"""
|
||
Nested UNet model with condition for image denoising.
|
||
"""
|
||
|
||
@register_to_config
|
||
def __init__(
|
||
self,
|
||
in_channels=3,
|
||
out_channels=3,
|
||
block_out_channels=(64, 128, 256),
|
||
cross_attention_dim=2048,
|
||
resnet_time_scale_shift="scale_shift",
|
||
down_block_types=("DownBlock2D", "DownBlock2D", "DownBlock2D"),
|
||
up_block_types=("UpBlock2D", "UpBlock2D", "UpBlock2D"),
|
||
mid_block_type=None,
|
||
nesting=False,
|
||
flip_sin_to_cos=False,
|
||
transformer_layers_per_block=[0, 0, 0],
|
||
layers_per_block=[2, 2, 1],
|
||
masked_cross_attention=True,
|
||
micro_conditioning_scale=256,
|
||
addition_embed_type="matryoshka",
|
||
skip_normalization=True,
|
||
time_embedding_dim=1024,
|
||
skip_inner_unet_input=False,
|
||
temporal_mode=False,
|
||
temporal_spatial_ds=False,
|
||
initialize_inner_with_pretrained=None,
|
||
use_attention_ffn=False,
|
||
act_fn="silu",
|
||
addition_embed_type_num_heads=64,
|
||
addition_time_embed_dim=None,
|
||
attention_head_dim=8,
|
||
attention_pre_only=False,
|
||
attention_type="default",
|
||
center_input_sample=False,
|
||
class_embed_type=None,
|
||
class_embeddings_concat=False,
|
||
conv_in_kernel=3,
|
||
conv_out_kernel=3,
|
||
cross_attention_norm=None,
|
||
downsample_padding=1,
|
||
dropout=0.0,
|
||
dual_cross_attention=False,
|
||
encoder_hid_dim=None,
|
||
encoder_hid_dim_type=None,
|
||
freq_shift=0,
|
||
mid_block_only_cross_attention=None,
|
||
mid_block_scale_factor=1,
|
||
norm_eps=1e-05,
|
||
norm_num_groups=32,
|
||
norm_type="layer_norm",
|
||
num_attention_heads=None,
|
||
num_class_embeds=None,
|
||
only_cross_attention=False,
|
||
projection_class_embeddings_input_dim=None,
|
||
resnet_out_scale_factor=1.0,
|
||
resnet_skip_time_act=False,
|
||
reverse_transformer_layers_per_block=None,
|
||
sample_size=None,
|
||
skip_cond_emb=False,
|
||
time_cond_proj_dim=None,
|
||
time_embedding_act_fn=None,
|
||
time_embedding_type="positional",
|
||
timestep_post_act=None,
|
||
upcast_attention=False,
|
||
use_linear_projection=False,
|
||
is_temporal=None,
|
||
inner_config={},
|
||
):
|
||
super().__init__(
|
||
in_channels=in_channels,
|
||
out_channels=out_channels,
|
||
block_out_channels=block_out_channels,
|
||
cross_attention_dim=cross_attention_dim,
|
||
resnet_time_scale_shift=resnet_time_scale_shift,
|
||
down_block_types=down_block_types,
|
||
up_block_types=up_block_types,
|
||
mid_block_type=mid_block_type,
|
||
nesting=nesting,
|
||
flip_sin_to_cos=flip_sin_to_cos,
|
||
transformer_layers_per_block=transformer_layers_per_block,
|
||
layers_per_block=layers_per_block,
|
||
masked_cross_attention=masked_cross_attention,
|
||
micro_conditioning_scale=micro_conditioning_scale,
|
||
addition_embed_type=addition_embed_type,
|
||
time_embedding_dim=time_embedding_dim,
|
||
temporal_mode=temporal_mode,
|
||
temporal_spatial_ds=temporal_spatial_ds,
|
||
use_attention_ffn=use_attention_ffn,
|
||
sample_size=sample_size,
|
||
)
|
||
# self.config.inner_config.conditioning_feature_dim = self.config.conditioning_feature_dim
|
||
|
||
if "inner_config" not in self.config.inner_config:
|
||
self.inner_unet = MatryoshkaUNet2DConditionModel(**self.config.inner_config)
|
||
else:
|
||
self.inner_unet = NestedUNet2DConditionModel(**self.config.inner_config)
|
||
|
||
if not self.config.skip_inner_unet_input:
|
||
self.in_adapter = nn.Conv2d(
|
||
self.config.block_out_channels[-1],
|
||
self.config.inner_config["block_out_channels"][0],
|
||
kernel_size=3,
|
||
padding=1,
|
||
)
|
||
else:
|
||
self.in_adapter = None
|
||
self.out_adapter = nn.Conv2d(
|
||
self.config.inner_config["block_out_channels"][0],
|
||
self.config.block_out_channels[-1],
|
||
kernel_size=3,
|
||
padding=1,
|
||
)
|
||
|
||
self.is_temporal = [self.config.temporal_mode and (not self.config.temporal_spatial_ds)]
|
||
if hasattr(self.inner_unet, "is_temporal"):
|
||
self.is_temporal = self.is_temporal + self.inner_unet.is_temporal
|
||
|
||
nest_ratio = int(2 ** (len(self.config.block_out_channels) - 1))
|
||
if self.is_temporal[0]:
|
||
nest_ratio = int(np.sqrt(nest_ratio))
|
||
if self.inner_unet.config.nesting and self.inner_unet.model_type == "nested_unet":
|
||
self.nest_ratio = [nest_ratio * self.inner_unet.nest_ratio[0]] + self.inner_unet.nest_ratio
|
||
else:
|
||
self.nest_ratio = [nest_ratio]
|
||
|
||
# self.register_modules(inner_unet=self.inner_unet)
|
||
|
||
@property
|
||
def model_type(self):
|
||
return "nested_unet"
|
||
|
||
def forward(
|
||
self,
|
||
sample: torch.Tensor,
|
||
timestep: Union[torch.Tensor, float, int],
|
||
encoder_hidden_states: torch.Tensor,
|
||
cond_emb: Optional[torch.Tensor] = None,
|
||
from_nested: bool = False,
|
||
class_labels: Optional[torch.Tensor] = None,
|
||
timestep_cond: Optional[torch.Tensor] = None,
|
||
attention_mask: Optional[torch.Tensor] = None,
|
||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
||
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
||
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
||
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
||
encoder_attention_mask: Optional[torch.Tensor] = None,
|
||
return_dict: bool = True,
|
||
) -> Union[MatryoshkaUNet2DConditionOutput, Tuple]:
|
||
r"""
|
||
The [`NestedUNet2DConditionModel`] forward method.
|
||
|
||
Args:
|
||
sample (`torch.Tensor`):
|
||
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
||
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
||
encoder_hidden_states (`torch.Tensor`):
|
||
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
||
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
||
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
||
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
||
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
||
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
||
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
||
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
||
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
||
negative values to the attention scores corresponding to "discard" tokens.
|
||
cross_attention_kwargs (`dict`, *optional*):
|
||
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
||
`self.processor` in
|
||
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||
added_cond_kwargs: (`dict`, *optional*):
|
||
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
||
are passed along to the UNet blocks.
|
||
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
||
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
||
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
||
A tensor that if specified is added to the residual of the middle unet block.
|
||
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
||
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
||
encoder_attention_mask (`torch.Tensor`):
|
||
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
||
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
||
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
||
return_dict (`bool`, *optional*, defaults to `True`):
|
||
Whether or not to return a [`~NestedUNet2DConditionOutput`] instead of a plain
|
||
tuple.
|
||
|
||
Returns:
|
||
[`~NestedUNet2DConditionOutput`] or `tuple`:
|
||
If `return_dict` is True, an [`~NestedUNet2DConditionOutput`] is returned,
|
||
otherwise a `tuple` is returned where the first element is the sample tensor.
|
||
"""
|
||
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
||
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
||
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
||
# on the fly if necessary.
|
||
default_overall_up_factor = 2**self.num_upsamplers
|
||
|
||
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
||
forward_upsample_size = False
|
||
upsample_size = None
|
||
|
||
if self.config.nesting:
|
||
sample, sample_feat = sample
|
||
if isinstance(sample, list) and len(sample) == 1:
|
||
sample = sample[0]
|
||
|
||
# 2. input layer (normalize the input)
|
||
bsz = [x.size(0) for x in sample]
|
||
bh, bl = bsz[0], bsz[1]
|
||
x_t_low, sample = sample[1:], sample[0]
|
||
|
||
for dim in sample.shape[-2:]:
|
||
if dim % default_overall_up_factor != 0:
|
||
# Forward upsample size to force interpolation output size.
|
||
forward_upsample_size = True
|
||
break
|
||
|
||
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
||
# expects mask of shape:
|
||
# [batch, key_tokens]
|
||
# adds singleton query_tokens dimension:
|
||
# [batch, 1, key_tokens]
|
||
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
||
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
||
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
||
if attention_mask is not None:
|
||
# assume that mask is expressed as:
|
||
# (1 = keep, 0 = discard)
|
||
# convert mask into a bias that can be added to attention scores:
|
||
# (keep = +0, discard = -10000.0)
|
||
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
||
attention_mask = attention_mask.unsqueeze(1)
|
||
|
||
# 0. center input if necessary
|
||
if self.config.center_input_sample:
|
||
sample = 2 * sample - 1.0
|
||
|
||
# 1. time
|
||
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
||
emb = self.time_embedding(t_emb, timestep_cond)
|
||
|
||
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
||
if class_emb is not None:
|
||
if self.config.class_embeddings_concat:
|
||
emb = torch.cat([emb, class_emb], dim=-1)
|
||
else:
|
||
emb = emb + class_emb
|
||
|
||
if self.inner_unet.model_type == "unet":
|
||
added_cond_kwargs = added_cond_kwargs or {}
|
||
added_cond_kwargs["masked_cross_attention"] = self.inner_unet.config.masked_cross_attention
|
||
added_cond_kwargs["micro_conditioning_scale"] = self.config.micro_conditioning_scale
|
||
added_cond_kwargs["conditioning_mask"] = encoder_attention_mask
|
||
|
||
if not self.config.nesting:
|
||
encoder_hidden_states = self.inner_unet.process_encoder_hidden_states(
|
||
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
|
||
aug_emb_inner_unet, cond_mask, cond_emb = self.inner_unet.get_aug_embed(
|
||
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
added_cond_kwargs["masked_cross_attention"] = self.config.masked_cross_attention
|
||
aug_emb, __, _ = self.get_aug_embed(
|
||
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
else:
|
||
aug_emb, cond_mask, _ = self.get_aug_embed(
|
||
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
|
||
elif self.inner_unet.model_type == "nested_unet":
|
||
added_cond_kwargs = added_cond_kwargs or {}
|
||
added_cond_kwargs["masked_cross_attention"] = self.inner_unet.inner_unet.config.masked_cross_attention
|
||
added_cond_kwargs["micro_conditioning_scale"] = self.config.micro_conditioning_scale
|
||
added_cond_kwargs["conditioning_mask"] = encoder_attention_mask
|
||
|
||
encoder_hidden_states = self.inner_unet.inner_unet.process_encoder_hidden_states(
|
||
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
|
||
aug_emb_inner_unet, cond_mask, cond_emb = self.inner_unet.inner_unet.get_aug_embed(
|
||
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
|
||
aug_emb, __, _ = self.get_aug_embed(
|
||
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
||
)
|
||
|
||
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
||
if encoder_attention_mask is not None:
|
||
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
||
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
||
|
||
if self.config.addition_embed_type == "image_hint":
|
||
aug_emb, hint = aug_emb
|
||
sample = torch.cat([sample, hint], dim=1)
|
||
|
||
emb = emb + aug_emb + cond_emb if aug_emb is not None else emb
|
||
|
||
if self.time_embed_act is not None:
|
||
emb = self.time_embed_act(emb)
|
||
|
||
if not self.config.skip_normalization:
|
||
sample = sample / sample.std((1, 2, 3), keepdims=True)
|
||
if isinstance(sample, list) and len(sample) == 1:
|
||
sample = sample[0]
|
||
sample = self.conv_in(sample)
|
||
if self.config.nesting:
|
||
sample = sample + sample_feat
|
||
|
||
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
||
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
||
if cross_attention_kwargs is not None:
|
||
cross_attention_kwargs = cross_attention_kwargs.copy()
|
||
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
||
else:
|
||
lora_scale = 1.0
|
||
|
||
if USE_PEFT_BACKEND:
|
||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||
scale_lora_layers(self, lora_scale)
|
||
|
||
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
||
is_adapter = down_intrablock_additional_residuals is not None
|
||
# maintain backward compatibility for legacy usage, where
|
||
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
||
# but can only use one or the other
|
||
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
||
deprecate(
|
||
"T2I should not use down_block_additional_residuals",
|
||
"1.3.0",
|
||
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
||
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
||
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
||
standard_warn=False,
|
||
)
|
||
down_intrablock_additional_residuals = down_block_additional_residuals
|
||
is_adapter = True
|
||
|
||
# 3. downsample blocks in the outer layers
|
||
down_block_res_samples = (sample,)
|
||
for downsample_block in self.down_blocks:
|
||
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
||
# For t2i-adapter CrossAttnDownBlock2D
|
||
additional_residuals = {}
|
||
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
||
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
||
|
||
sample, res_samples = downsample_block(
|
||
hidden_states=sample,
|
||
temb=emb[:bh],
|
||
encoder_hidden_states=encoder_hidden_states[:bh],
|
||
attention_mask=attention_mask,
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
encoder_attention_mask=cond_mask[:bh] if cond_mask is not None else cond_mask,
|
||
**additional_residuals,
|
||
)
|
||
else:
|
||
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
||
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
||
sample += down_intrablock_additional_residuals.pop(0)
|
||
|
||
down_block_res_samples += res_samples
|
||
|
||
# 4. run inner unet
|
||
x_inner = self.in_adapter(sample) if self.in_adapter is not None else None
|
||
x_inner = (
|
||
torch.cat([x_inner, x_inner.new_zeros(bl - bh, *x_inner.size()[1:])], 0) if bh < bl else x_inner
|
||
) # pad zeros for low-resolutions
|
||
inner_unet_output = self.inner_unet(
|
||
(x_t_low, x_inner),
|
||
timestep,
|
||
cond_emb=cond_emb,
|
||
encoder_hidden_states=encoder_hidden_states,
|
||
encoder_attention_mask=cond_mask,
|
||
from_nested=True,
|
||
)
|
||
x_low, x_inner = inner_unet_output.sample, inner_unet_output.sample_inner
|
||
x_inner = self.out_adapter(x_inner)
|
||
sample = sample + x_inner[:bh] if bh < bl else sample + x_inner
|
||
|
||
# 5. upsample blocks in the outer layers
|
||
for i, upsample_block in enumerate(self.up_blocks):
|
||
is_final_block = i == len(self.up_blocks) - 1
|
||
|
||
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
||
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
||
|
||
# if we have not reached the final block and need to forward the
|
||
# upsample size, we do it here
|
||
if not is_final_block and forward_upsample_size:
|
||
upsample_size = down_block_res_samples[-1].shape[2:]
|
||
|
||
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
||
sample = upsample_block(
|
||
hidden_states=sample,
|
||
temb=emb[:bh],
|
||
res_hidden_states_tuple=res_samples,
|
||
encoder_hidden_states=encoder_hidden_states[:bh],
|
||
cross_attention_kwargs=cross_attention_kwargs,
|
||
upsample_size=upsample_size,
|
||
attention_mask=attention_mask,
|
||
encoder_attention_mask=cond_mask[:bh] if cond_mask is not None else cond_mask,
|
||
)
|
||
else:
|
||
sample = upsample_block(
|
||
hidden_states=sample,
|
||
temb=emb,
|
||
res_hidden_states_tuple=res_samples,
|
||
upsample_size=upsample_size,
|
||
)
|
||
|
||
# 6. post-process
|
||
if self.conv_norm_out:
|
||
sample_out = self.conv_norm_out(sample)
|
||
sample_out = self.conv_act(sample_out)
|
||
sample_out = self.conv_out(sample_out)
|
||
|
||
if USE_PEFT_BACKEND:
|
||
# remove `lora_scale` from each PEFT layer
|
||
unscale_lora_layers(self, lora_scale)
|
||
|
||
# 7. output both low and high-res output
|
||
if isinstance(x_low, list):
|
||
out = [sample_out] + x_low
|
||
else:
|
||
out = [sample_out, x_low]
|
||
if self.config.nesting:
|
||
return NestedUNet2DConditionOutput(sample=out, sample_inner=sample)
|
||
if not return_dict:
|
||
return (out,)
|
||
else:
|
||
return NestedUNet2DConditionOutput(sample=out)
|
||
|
||
|
||
@dataclass
|
||
class MatryoshkaPipelineOutput(BaseOutput):
|
||
"""
|
||
Output class for Matryoshka pipelines.
|
||
|
||
Args:
|
||
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
||
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
||
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
||
"""
|
||
|
||
images: Union[List[Image.Image], List[List[Image.Image]], np.ndarray, List[np.ndarray]]
|
||
|
||
|
||
class MatryoshkaPipeline(
|
||
DiffusionPipeline,
|
||
StableDiffusionMixin,
|
||
TextualInversionLoaderMixin,
|
||
StableDiffusionLoraLoaderMixin,
|
||
IPAdapterMixin,
|
||
FromSingleFileMixin,
|
||
):
|
||
r"""
|
||
Pipeline for text-to-image generation using Matryoshka Diffusion Models.
|
||
|
||
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
|
||
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
|
||
|
||
The pipeline also inherits the following loading methods:
|
||
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
||
- [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
||
- [`~loaders.StableDiffusionLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
||
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
||
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
||
|
||
Args:
|
||
text_encoder ([`~transformers.T5EncoderModel`]):
|
||
Frozen text-encoder ([flan-t5-xl](https://huggingface.co/google/flan-t5-xl)).
|
||
tokenizer ([`~transformers.T5Tokenizer`]):
|
||
A `T5Tokenizer` to tokenize text.
|
||
unet ([`MatryoshkaUNet2DConditionModel`]):
|
||
A `MatryoshkaUNet2DConditionModel` to denoise the encoded image latents.
|
||
scheduler ([`SchedulerMixin`]):
|
||
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
||
[`MatryoshkaDDIMScheduler`] and other schedulers with proper modifications, see an example usage in README.md.
|
||
feature_extractor ([`~transformers.<AnImageProcessor>`]):
|
||
A `AnImageProcessor` to extract features from generated images; used as inputs to the `safety_checker`.
|
||
"""
|
||
|
||
model_cpu_offload_seq = "text_encoder->image_encoder->unet"
|
||
_optional_components = ["unet", "feature_extractor", "image_encoder"]
|
||
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
||
|
||
def __init__(
|
||
self,
|
||
text_encoder: T5EncoderModel,
|
||
tokenizer: T5TokenizerFast,
|
||
scheduler: MatryoshkaDDIMScheduler,
|
||
unet: MatryoshkaUNet2DConditionModel = None,
|
||
feature_extractor: CLIPImageProcessor = None,
|
||
image_encoder: CLIPVisionModelWithProjection = None,
|
||
trust_remote_code: bool = False,
|
||
nesting_level: int = 0,
|
||
):
|
||
super().__init__()
|
||
|
||
if nesting_level == 0:
|
||
unet = MatryoshkaUNet2DConditionModel.from_pretrained(
|
||
"tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_0"
|
||
)
|
||
elif nesting_level == 1:
|
||
unet = NestedUNet2DConditionModel.from_pretrained(
|
||
"tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_1"
|
||
)
|
||
elif nesting_level == 2:
|
||
unet = NestedUNet2DConditionModel.from_pretrained(
|
||
"tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_2"
|
||
)
|
||
else:
|
||
raise ValueError("Currently, nesting levels 0, 1, and 2 are supported.")
|
||
|
||
if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
|
||
deprecation_message = (
|
||
f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
|
||
f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
|
||
"to update the config accordingly as leaving `steps_offset` might led to incorrect results"
|
||
" in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
|
||
" it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
|
||
" file"
|
||
)
|
||
deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
|
||
new_config = dict(scheduler.config)
|
||
new_config["steps_offset"] = 1
|
||
scheduler._internal_dict = FrozenDict(new_config)
|
||
|
||
# if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
|
||
# deprecation_message = (
|
||
# f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
|
||
# " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
|
||
# " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
|
||
# " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
|
||
# " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
|
||
# )
|
||
# deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
|
||
# new_config = dict(scheduler.config)
|
||
# new_config["clip_sample"] = False
|
||
# scheduler._internal_dict = FrozenDict(new_config)
|
||
|
||
is_unet_version_less_0_9_0 = (
|
||
unet is not None
|
||
and hasattr(unet.config, "_diffusers_version")
|
||
and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0")
|
||
)
|
||
is_unet_sample_size_less_64 = (
|
||
unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
|
||
)
|
||
if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
|
||
deprecation_message = (
|
||
"The configuration file of the unet has set the default `sample_size` to smaller than"
|
||
" 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
|
||
" following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
|
||
" CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
|
||
" \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
|
||
" configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
|
||
" in the config might lead to incorrect results in future versions. If you have downloaded this"
|
||
" checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
|
||
" the `unet/config.json` file"
|
||
)
|
||
deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
|
||
new_config = dict(unet.config)
|
||
new_config["sample_size"] = 64
|
||
unet._internal_dict = FrozenDict(new_config)
|
||
|
||
if hasattr(unet, "nest_ratio"):
|
||
scheduler.scales = unet.nest_ratio + [1]
|
||
if nesting_level == 2:
|
||
scheduler.schedule_shifted_power = 2.0
|
||
|
||
self.register_modules(
|
||
text_encoder=text_encoder,
|
||
tokenizer=tokenizer,
|
||
unet=unet,
|
||
scheduler=scheduler,
|
||
feature_extractor=feature_extractor,
|
||
image_encoder=image_encoder,
|
||
)
|
||
self.register_to_config(nesting_level=nesting_level)
|
||
self.image_processor = VaeImageProcessor(do_resize=False)
|
||
|
||
def change_nesting_level(self, nesting_level: int):
|
||
if nesting_level == 0:
|
||
if hasattr(self.unet, "nest_ratio"):
|
||
self.scheduler.scales = None
|
||
self.unet = MatryoshkaUNet2DConditionModel.from_pretrained(
|
||
"tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_0"
|
||
).to(self.device)
|
||
self.config.nesting_level = 0
|
||
elif nesting_level == 1:
|
||
self.unet = NestedUNet2DConditionModel.from_pretrained(
|
||
"tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_1"
|
||
).to(self.device)
|
||
self.config.nesting_level = 1
|
||
self.scheduler.scales = self.unet.nest_ratio + [1]
|
||
self.scheduler.schedule_shifted_power = 1.0
|
||
elif nesting_level == 2:
|
||
self.unet = NestedUNet2DConditionModel.from_pretrained(
|
||
"tolgacangoz/matryoshka-diffusion-models", subfolder="unet/nesting_level_2"
|
||
).to(self.device)
|
||
self.config.nesting_level = 2
|
||
self.scheduler.scales = self.unet.nest_ratio + [1]
|
||
self.scheduler.schedule_shifted_power = 2.0
|
||
else:
|
||
raise ValueError("Currently, nesting levels 0, 1, and 2 are supported.")
|
||
|
||
gc.collect()
|
||
torch.cuda.empty_cache()
|
||
|
||
def encode_prompt(
|
||
self,
|
||
prompt,
|
||
device,
|
||
num_images_per_prompt,
|
||
do_classifier_free_guidance,
|
||
negative_prompt=None,
|
||
prompt_embeds: Optional[torch.Tensor] = None,
|
||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||
lora_scale: Optional[float] = None,
|
||
clip_skip: Optional[int] = None,
|
||
):
|
||
r"""
|
||
Encodes the prompt into text encoder hidden states.
|
||
|
||
Args:
|
||
prompt (`str` or `List[str]`, *optional*):
|
||
prompt to be encoded
|
||
device: (`torch.device`):
|
||
torch device
|
||
num_images_per_prompt (`int`):
|
||
number of images that should be generated per prompt
|
||
do_classifier_free_guidance (`bool`):
|
||
whether to use classifier free guidance or not
|
||
negative_prompt (`str` or `List[str]`, *optional*):
|
||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||
less than `1`).
|
||
prompt_embeds (`torch.Tensor`, *optional*):
|
||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||
provided, text embeddings will be generated from `prompt` input argument.
|
||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
||
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
||
argument.
|
||
lora_scale (`float`, *optional*):
|
||
A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
||
clip_skip (`int`, *optional*):
|
||
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
||
the output of the pre-final layer will be used for computing the prompt embeddings.
|
||
"""
|
||
# set lora scale so that monkey patched LoRA
|
||
# function of text encoder can correctly access it
|
||
if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
|
||
self._lora_scale = lora_scale
|
||
|
||
# dynamically adjust the LoRA scale
|
||
if not USE_PEFT_BACKEND:
|
||
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
||
else:
|
||
scale_lora_layers(self.text_encoder, lora_scale)
|
||
|
||
if prompt is not None and isinstance(prompt, str):
|
||
batch_size = 1
|
||
elif prompt is not None and isinstance(prompt, list):
|
||
batch_size = len(prompt)
|
||
else:
|
||
batch_size = prompt_embeds.shape[0]
|
||
|
||
if prompt_embeds is None:
|
||
# textual inversion: process multi-vector tokens if necessary
|
||
if isinstance(self, TextualInversionLoaderMixin):
|
||
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
||
|
||
text_inputs = self.tokenizer(
|
||
prompt,
|
||
return_tensors="pt",
|
||
)
|
||
text_input_ids = text_inputs.input_ids
|
||
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||
|
||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
||
text_input_ids, untruncated_ids
|
||
):
|
||
removed_text = self.tokenizer.batch_decode(
|
||
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
||
)
|
||
logger.warning(
|
||
"The following part of your input was truncated because FLAN-T5-XL for this pipeline can only handle sequences up to"
|
||
f" {self.tokenizer.model_max_length} tokens: {removed_text}"
|
||
)
|
||
|
||
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||
prompt_attention_mask = text_inputs.attention_mask.to(device)
|
||
else:
|
||
prompt_attention_mask = None
|
||
|
||
if self.text_encoder is not None:
|
||
prompt_embeds_dtype = self.text_encoder.dtype
|
||
elif self.unet is not None:
|
||
prompt_embeds_dtype = self.unet.dtype
|
||
else:
|
||
prompt_embeds_dtype = prompt_embeds.dtype
|
||
|
||
# get unconditional embeddings for classifier free guidance
|
||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||
uncond_tokens: List[str]
|
||
if negative_prompt is None:
|
||
uncond_tokens = [""] * batch_size
|
||
elif prompt is not None and type(prompt) is not type(negative_prompt):
|
||
raise TypeError(
|
||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||
f" {type(prompt)}."
|
||
)
|
||
elif isinstance(negative_prompt, str):
|
||
uncond_tokens = [negative_prompt]
|
||
elif batch_size != len(negative_prompt):
|
||
raise ValueError(
|
||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||
" the batch size of `prompt`."
|
||
)
|
||
else:
|
||
uncond_tokens = negative_prompt
|
||
|
||
# textual inversion: process multi-vector tokens if necessary
|
||
if isinstance(self, TextualInversionLoaderMixin):
|
||
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)
|
||
|
||
uncond_input = self.tokenizer(
|
||
uncond_tokens,
|
||
return_tensors="pt",
|
||
)
|
||
uncond_input_ids = uncond_input.input_ids
|
||
|
||
if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
|
||
negative_prompt_attention_mask = uncond_input.attention_mask.to(device)
|
||
else:
|
||
negative_prompt_attention_mask = None
|
||
|
||
if not do_classifier_free_guidance:
|
||
if clip_skip is None:
|
||
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)
|
||
prompt_embeds = prompt_embeds[0]
|
||
else:
|
||
prompt_embeds = self.text_encoder(
|
||
text_input_ids.to(device), attention_mask=prompt_attention_mask, output_hidden_states=True
|
||
)
|
||
# Access the `hidden_states` first, that contains a tuple of
|
||
# all the hidden states from the encoder layers. Then index into
|
||
# the tuple to access the hidden states from the desired layer.
|
||
prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
|
||
# We also need to apply the final LayerNorm here to not mess with the
|
||
# representations. The `last_hidden_states` that we typically use for
|
||
# obtaining the final prompt representations passes through the LayerNorm
|
||
# layer.
|
||
prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)
|
||
else:
|
||
max_len = max(len(text_input_ids[0]), len(uncond_input_ids[0]))
|
||
if len(text_input_ids[0]) < max_len:
|
||
text_input_ids = torch.cat(
|
||
[text_input_ids, torch.zeros(batch_size, max_len - len(text_input_ids[0]), dtype=torch.long)],
|
||
dim=1,
|
||
)
|
||
prompt_attention_mask = torch.cat(
|
||
[
|
||
prompt_attention_mask,
|
||
torch.zeros(
|
||
batch_size, max_len - len(prompt_attention_mask[0]), dtype=torch.long, device=device
|
||
),
|
||
],
|
||
dim=1,
|
||
)
|
||
elif len(uncond_input_ids[0]) < max_len:
|
||
uncond_input_ids = torch.cat(
|
||
[uncond_input_ids, torch.zeros(batch_size, max_len - len(uncond_input_ids[0]), dtype=torch.long)],
|
||
dim=1,
|
||
)
|
||
negative_prompt_attention_mask = torch.cat(
|
||
[
|
||
negative_prompt_attention_mask,
|
||
torch.zeros(
|
||
batch_size,
|
||
max_len - len(negative_prompt_attention_mask[0]),
|
||
dtype=torch.long,
|
||
device=device,
|
||
),
|
||
],
|
||
dim=1,
|
||
)
|
||
cfg_input_ids = torch.cat([uncond_input_ids, text_input_ids], dim=0)
|
||
cfg_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
||
prompt_embeds = self.text_encoder(
|
||
cfg_input_ids.to(device),
|
||
attention_mask=cfg_attention_mask,
|
||
)
|
||
prompt_embeds = prompt_embeds[0]
|
||
|
||
prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)
|
||
|
||
if self.text_encoder is not None:
|
||
if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
|
||
# Retrieve the original scale by scaling back the LoRA layers
|
||
unscale_lora_layers(self.text_encoder, lora_scale)
|
||
|
||
if not do_classifier_free_guidance:
|
||
return prompt_embeds, None, prompt_attention_mask, None
|
||
return prompt_embeds[1], prompt_embeds[0], prompt_attention_mask, negative_prompt_attention_mask
|
||
|
||
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
||
dtype = next(self.image_encoder.parameters()).dtype
|
||
|
||
if not isinstance(image, torch.Tensor):
|
||
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
||
|
||
image = image.to(device=device, dtype=dtype)
|
||
if output_hidden_states:
|
||
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
||
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
||
uncond_image_enc_hidden_states = self.image_encoder(
|
||
torch.zeros_like(image), output_hidden_states=True
|
||
).hidden_states[-2]
|
||
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
||
num_images_per_prompt, dim=0
|
||
)
|
||
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
||
else:
|
||
image_embeds = self.image_encoder(image).image_embeds
|
||
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
||
uncond_image_embeds = torch.zeros_like(image_embeds)
|
||
|
||
return image_embeds, uncond_image_embeds
|
||
|
||
def prepare_ip_adapter_image_embeds(
|
||
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
||
):
|
||
image_embeds = []
|
||
if do_classifier_free_guidance:
|
||
negative_image_embeds = []
|
||
if ip_adapter_image_embeds is None:
|
||
if not isinstance(ip_adapter_image, list):
|
||
ip_adapter_image = [ip_adapter_image]
|
||
|
||
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
||
raise ValueError(
|
||
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
||
)
|
||
|
||
for single_ip_adapter_image, image_proj_layer in zip(
|
||
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
||
):
|
||
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
||
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
||
single_ip_adapter_image, device, 1, output_hidden_state
|
||
)
|
||
|
||
image_embeds.append(single_image_embeds[None, :])
|
||
if do_classifier_free_guidance:
|
||
negative_image_embeds.append(single_negative_image_embeds[None, :])
|
||
else:
|
||
for single_image_embeds in ip_adapter_image_embeds:
|
||
if do_classifier_free_guidance:
|
||
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
||
negative_image_embeds.append(single_negative_image_embeds)
|
||
image_embeds.append(single_image_embeds)
|
||
|
||
ip_adapter_image_embeds = []
|
||
for i, single_image_embeds in enumerate(image_embeds):
|
||
single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
|
||
if do_classifier_free_guidance:
|
||
single_negative_image_embeds = torch.cat([negative_image_embeds[i]] * num_images_per_prompt, dim=0)
|
||
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds], dim=0)
|
||
|
||
single_image_embeds = single_image_embeds.to(device=device)
|
||
ip_adapter_image_embeds.append(single_image_embeds)
|
||
|
||
return ip_adapter_image_embeds
|
||
|
||
def prepare_extra_step_kwargs(self, generator, eta):
|
||
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
||
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
||
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
||
# and should be between [0, 1]
|
||
|
||
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||
extra_step_kwargs = {}
|
||
if accepts_eta:
|
||
extra_step_kwargs["eta"] = eta
|
||
|
||
# check if the scheduler accepts generator
|
||
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
||
if accepts_generator:
|
||
extra_step_kwargs["generator"] = generator
|
||
return extra_step_kwargs
|
||
|
||
def check_inputs(
|
||
self,
|
||
prompt,
|
||
height,
|
||
width,
|
||
callback_steps,
|
||
negative_prompt=None,
|
||
prompt_embeds=None,
|
||
negative_prompt_embeds=None,
|
||
ip_adapter_image=None,
|
||
ip_adapter_image_embeds=None,
|
||
callback_on_step_end_tensor_inputs=None,
|
||
):
|
||
if height % 8 != 0 or width % 8 != 0:
|
||
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
||
|
||
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
||
raise ValueError(
|
||
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
||
f" {type(callback_steps)}."
|
||
)
|
||
if callback_on_step_end_tensor_inputs is not None and not all(
|
||
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
||
):
|
||
raise ValueError(
|
||
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
||
)
|
||
|
||
if prompt is not None and prompt_embeds is not None:
|
||
raise ValueError(
|
||
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
||
" only forward one of the two."
|
||
)
|
||
elif prompt is None and prompt_embeds is None:
|
||
raise ValueError(
|
||
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
||
)
|
||
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
||
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
||
|
||
if negative_prompt is not None and negative_prompt_embeds is not None:
|
||
raise ValueError(
|
||
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
||
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
||
)
|
||
|
||
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
||
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
||
raise ValueError(
|
||
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
||
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
||
f" {negative_prompt_embeds.shape}."
|
||
)
|
||
|
||
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
||
raise ValueError(
|
||
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
||
)
|
||
|
||
if ip_adapter_image_embeds is not None:
|
||
if not isinstance(ip_adapter_image_embeds, list):
|
||
raise ValueError(
|
||
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
||
)
|
||
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
||
raise ValueError(
|
||
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
||
)
|
||
|
||
def prepare_latents(
|
||
self, batch_size, num_channels_latents, height, width, dtype, device, generator, scales, latents=None
|
||
):
|
||
shape = (
|
||
batch_size,
|
||
num_channels_latents,
|
||
int(height),
|
||
int(width),
|
||
)
|
||
if isinstance(generator, list) and len(generator) != batch_size:
|
||
raise ValueError(
|
||
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
||
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
||
)
|
||
|
||
if latents is None:
|
||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||
if scales is not None:
|
||
out = [latents]
|
||
for s in scales[1:]:
|
||
ratio = scales[0] // s
|
||
sample_low = F.avg_pool2d(latents, ratio) * ratio
|
||
sample_low = sample_low.normal_(generator=generator)
|
||
out += [sample_low]
|
||
latents = out
|
||
else:
|
||
if scales is not None:
|
||
latents = [latent.to(device=device) for latent in latents]
|
||
else:
|
||
latents = latents.to(device)
|
||
|
||
# scale the initial noise by the standard deviation required by the scheduler
|
||
if scales is not None:
|
||
latents = [latent * self.scheduler.init_noise_sigma for latent in latents]
|
||
else:
|
||
latents = latents * self.scheduler.init_noise_sigma
|
||
return latents
|
||
|
||
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
||
def get_guidance_scale_embedding(
|
||
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
||
) -> torch.Tensor:
|
||
"""
|
||
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
||
|
||
Args:
|
||
w (`torch.Tensor`):
|
||
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
||
embedding_dim (`int`, *optional*, defaults to 512):
|
||
Dimension of the embeddings to generate.
|
||
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
||
Data type of the generated embeddings.
|
||
|
||
Returns:
|
||
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
||
"""
|
||
assert len(w.shape) == 1
|
||
w = w * 1000.0
|
||
|
||
half_dim = embedding_dim // 2
|
||
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
||
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
||
emb = w.to(dtype)[:, None] * emb[None, :]
|
||
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
||
if embedding_dim % 2 == 1: # zero pad
|
||
emb = torch.nn.functional.pad(emb, (0, 1))
|
||
assert emb.shape == (w.shape[0], embedding_dim)
|
||
return emb
|
||
|
||
@property
|
||
def guidance_scale(self):
|
||
return self._guidance_scale
|
||
|
||
@property
|
||
def guidance_rescale(self):
|
||
return self._guidance_rescale
|
||
|
||
@property
|
||
def clip_skip(self):
|
||
return self._clip_skip
|
||
|
||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
||
# corresponds to doing no classifier free guidance.
|
||
@property
|
||
def do_classifier_free_guidance(self):
|
||
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
||
|
||
@property
|
||
def cross_attention_kwargs(self):
|
||
return self._cross_attention_kwargs
|
||
|
||
@property
|
||
def num_timesteps(self):
|
||
return self._num_timesteps
|
||
|
||
@property
|
||
def interrupt(self):
|
||
return self._interrupt
|
||
|
||
@torch.no_grad()
|
||
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
||
def __call__(
|
||
self,
|
||
prompt: Union[str, List[str]] = None,
|
||
height: Optional[int] = None,
|
||
width: Optional[int] = None,
|
||
num_inference_steps: int = 50,
|
||
timesteps: List[int] = None,
|
||
sigmas: List[float] = None,
|
||
guidance_scale: float = 7.5,
|
||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||
num_images_per_prompt: Optional[int] = 1,
|
||
eta: float = 0.0,
|
||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||
latents: Optional[torch.Tensor] = None,
|
||
prompt_embeds: Optional[torch.Tensor] = None,
|
||
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
||
ip_adapter_image: Optional[PipelineImageInput] = None,
|
||
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
||
output_type: Optional[str] = "pil",
|
||
return_dict: bool = True,
|
||
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||
guidance_rescale: float = 0.0,
|
||
clip_skip: Optional[int] = None,
|
||
callback_on_step_end: Optional[
|
||
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
||
] = None,
|
||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||
**kwargs,
|
||
):
|
||
r"""
|
||
The call function to the pipeline for generation.
|
||
|
||
Args:
|
||
prompt (`str` or `List[str]`, *optional*):
|
||
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
|
||
height (`int`, *optional*, defaults to `self.unet.config.sample_size`):
|
||
The height in pixels of the generated image.
|
||
width (`int`, *optional*, defaults to `self.unet.config.sample_size`):
|
||
The width in pixels of the generated image.
|
||
num_inference_steps (`int`, *optional*, defaults to 50):
|
||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||
expense of slower inference.
|
||
timesteps (`List[int]`, *optional*):
|
||
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
||
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
||
passed will be used. Must be in descending order.
|
||
sigmas (`List[float]`, *optional*):
|
||
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
||
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
||
will be used.
|
||
guidance_scale (`float`, *optional*, defaults to 7.5):
|
||
A higher guidance scale value encourages the model to generate images closely linked to the text
|
||
`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
|
||
negative_prompt (`str` or `List[str]`, *optional*):
|
||
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
|
||
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
|
||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||
The number of images to generate per prompt.
|
||
eta (`float`, *optional*, defaults to 0.0):
|
||
Corresponds to parameter eta (η) from the [DDIM](https://huggingface.co/papers/2010.02502) paper. Only applies
|
||
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
|
||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
||
generation deterministic.
|
||
latents (`torch.Tensor`, *optional*):
|
||
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||
tensor is generated by sampling using the supplied random `generator`.
|
||
prompt_embeds (`torch.Tensor`, *optional*):
|
||
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
||
provided, text embeddings are generated from the `prompt` input argument.
|
||
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
||
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
|
||
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
|
||
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
||
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
||
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
||
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
||
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
||
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
||
return_dict (`bool`, *optional*, defaults to `True`):
|
||
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
||
plain tuple.
|
||
cross_attention_kwargs (`dict`, *optional*):
|
||
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
|
||
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
||
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
||
Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are
|
||
Flawed](https://huggingface.co/papers/2305.08891). Guidance rescale factor should fix overexposure when
|
||
using zero terminal SNR.
|
||
clip_skip (`int`, *optional*):
|
||
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
||
the output of the pre-final layer will be used for computing the prompt embeddings.
|
||
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
||
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
||
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
||
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
||
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
||
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
||
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
||
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
||
`._callback_tensor_inputs` attribute of your pipeline class.
|
||
|
||
Examples:
|
||
|
||
Returns:
|
||
[`~MatryoshkaPipelineOutput`] or `tuple`:
|
||
If `return_dict` is `True`, [`~MatryoshkaPipelineOutput`] is returned,
|
||
otherwise a `tuple` is returned where the first element is a list with the generated images and the
|
||
second element is a list of `bool`s indicating whether the corresponding generated image contains
|
||
"not-safe-for-work" (nsfw) content.
|
||
"""
|
||
|
||
callback = kwargs.pop("callback", None)
|
||
callback_steps = kwargs.pop("callback_steps", None)
|
||
|
||
if callback is not None:
|
||
deprecate(
|
||
"callback",
|
||
"1.0.0",
|
||
"Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
||
)
|
||
if callback_steps is not None:
|
||
deprecate(
|
||
"callback_steps",
|
||
"1.0.0",
|
||
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
|
||
)
|
||
|
||
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
||
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
||
|
||
# 0. Default height and width to unet
|
||
height = height or self.unet.config.sample_size
|
||
width = width or self.unet.config.sample_size
|
||
# to deal with lora scaling and other possible forward hooks
|
||
|
||
# 1. Check inputs. Raise error if not correct
|
||
self.check_inputs(
|
||
prompt,
|
||
height,
|
||
width,
|
||
callback_steps,
|
||
negative_prompt,
|
||
prompt_embeds,
|
||
negative_prompt_embeds,
|
||
ip_adapter_image,
|
||
ip_adapter_image_embeds,
|
||
callback_on_step_end_tensor_inputs,
|
||
)
|
||
|
||
self._guidance_scale = guidance_scale
|
||
self._guidance_rescale = guidance_rescale
|
||
self._clip_skip = clip_skip
|
||
self._cross_attention_kwargs = cross_attention_kwargs
|
||
self._interrupt = False
|
||
|
||
# 2. Define call parameters
|
||
if prompt is not None and isinstance(prompt, str):
|
||
batch_size = 1
|
||
elif prompt is not None and isinstance(prompt, list):
|
||
batch_size = len(prompt)
|
||
else:
|
||
batch_size = prompt_embeds.shape[0]
|
||
|
||
device = self._execution_device
|
||
|
||
# 3. Encode input prompt
|
||
lora_scale = (
|
||
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
||
)
|
||
|
||
(
|
||
prompt_embeds,
|
||
negative_prompt_embeds,
|
||
prompt_attention_mask,
|
||
negative_prompt_attention_mask,
|
||
) = self.encode_prompt(
|
||
prompt,
|
||
device,
|
||
num_images_per_prompt,
|
||
self.do_classifier_free_guidance,
|
||
negative_prompt,
|
||
prompt_embeds=prompt_embeds,
|
||
negative_prompt_embeds=negative_prompt_embeds,
|
||
lora_scale=lora_scale,
|
||
clip_skip=self.clip_skip,
|
||
)
|
||
|
||
# For classifier free guidance, we need to do two forward passes.
|
||
# Here we concatenate the unconditional and text embeddings into a single batch
|
||
# to avoid doing two forward passes
|
||
if self.do_classifier_free_guidance:
|
||
prompt_embeds = torch.cat([negative_prompt_embeds.unsqueeze(0), prompt_embeds.unsqueeze(0)])
|
||
attention_masks = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])
|
||
else:
|
||
attention_masks = prompt_attention_mask
|
||
|
||
prompt_embeds = prompt_embeds * attention_masks.unsqueeze(-1)
|
||
|
||
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
||
image_embeds = self.prepare_ip_adapter_image_embeds(
|
||
ip_adapter_image,
|
||
ip_adapter_image_embeds,
|
||
device,
|
||
batch_size * num_images_per_prompt,
|
||
self.do_classifier_free_guidance,
|
||
)
|
||
|
||
# 4. Prepare timesteps
|
||
timesteps, num_inference_steps = retrieve_timesteps(
|
||
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
||
)
|
||
timesteps = timesteps[:-1]
|
||
|
||
# 5. Prepare latent variables
|
||
num_channels_latents = self.unet.config.in_channels
|
||
latents = self.prepare_latents(
|
||
batch_size * num_images_per_prompt,
|
||
num_channels_latents,
|
||
height,
|
||
width,
|
||
prompt_embeds.dtype,
|
||
device,
|
||
generator,
|
||
self.scheduler.scales,
|
||
latents,
|
||
)
|
||
|
||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||
extra_step_kwargs |= {"use_clipped_model_output": True}
|
||
|
||
# 6.1 Add image embeds for IP-Adapter
|
||
added_cond_kwargs = (
|
||
{"image_embeds": image_embeds}
|
||
if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
|
||
else None
|
||
)
|
||
|
||
# 6.2 Optionally get Guidance Scale Embedding
|
||
timestep_cond = None
|
||
if self.unet.config.time_cond_proj_dim is not None:
|
||
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
||
timestep_cond = self.get_guidance_scale_embedding(
|
||
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
||
).to(device=device, dtype=latents.dtype)
|
||
|
||
# 7. Denoising loop
|
||
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
||
self._num_timesteps = len(timesteps)
|
||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||
for i, t in enumerate(timesteps):
|
||
if self.interrupt:
|
||
continue
|
||
|
||
# expand the latents if we are doing classifier free guidance
|
||
if self.do_classifier_free_guidance and isinstance(latents, list):
|
||
latent_model_input = [latent.repeat(2, 1, 1, 1) for latent in latents]
|
||
elif self.do_classifier_free_guidance:
|
||
latent_model_input = latents.repeat(2, 1, 1, 1)
|
||
else:
|
||
latent_model_input = latents
|
||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||
|
||
# predict the noise residual
|
||
noise_pred = self.unet(
|
||
latent_model_input,
|
||
t - 1,
|
||
encoder_hidden_states=prompt_embeds,
|
||
timestep_cond=timestep_cond,
|
||
cross_attention_kwargs=self.cross_attention_kwargs,
|
||
added_cond_kwargs=added_cond_kwargs,
|
||
encoder_attention_mask=attention_masks,
|
||
return_dict=False,
|
||
)[0]
|
||
|
||
# perform guidance
|
||
if isinstance(noise_pred, list) and self.do_classifier_free_guidance:
|
||
for i, (noise_pred_uncond, noise_pred_text) in enumerate(noise_pred):
|
||
noise_pred[i] = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||
elif self.do_classifier_free_guidance:
|
||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||
|
||
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
||
# Based on 3.4. in https://huggingface.co/papers/2305.08891
|
||
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
||
|
||
# compute the previous noisy sample x_t -> x_t-1
|
||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||
|
||
if callback_on_step_end is not None:
|
||
callback_kwargs = {}
|
||
for k in callback_on_step_end_tensor_inputs:
|
||
callback_kwargs[k] = locals()[k]
|
||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||
|
||
latents = callback_outputs.pop("latents", latents)
|
||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||
|
||
# call the callback, if provided
|
||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||
progress_bar.update()
|
||
if callback is not None and i % callback_steps == 0:
|
||
step_idx = i // getattr(self.scheduler, "order", 1)
|
||
callback(step_idx, t, latents)
|
||
|
||
if XLA_AVAILABLE:
|
||
xm.mark_step()
|
||
|
||
image = latents
|
||
|
||
if self.scheduler.scales is not None:
|
||
for i, img in enumerate(image):
|
||
image[i] = self.image_processor.postprocess(img, output_type=output_type)[0]
|
||
else:
|
||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||
|
||
# Offload all models
|
||
self.maybe_free_model_hooks()
|
||
|
||
if not return_dict:
|
||
return (image,)
|
||
|
||
return MatryoshkaPipelineOutput(images=image)
|