mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-27 17:22:53 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
471 lines
17 KiB
Python
471 lines
17 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import (
|
|
CLIPTextConfig,
|
|
CLIPTextModel,
|
|
CLIPTokenizer,
|
|
DPTConfig,
|
|
DPTForDepthEstimation,
|
|
DPTImageProcessor,
|
|
)
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
PNDMScheduler,
|
|
StableDiffusionDepth2ImgPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
load_image,
|
|
load_numpy,
|
|
nightly,
|
|
require_accelerate_version_greater,
|
|
require_accelerator,
|
|
require_torch_accelerator,
|
|
skip_mps,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import (
|
|
IMAGE_TO_IMAGE_IMAGE_PARAMS,
|
|
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
|
|
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
|
|
TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS,
|
|
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
@skip_mps
|
|
class StableDiffusionDepth2ImgPipelineFastTests(
|
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
|
|
):
|
|
pipeline_class = StableDiffusionDepth2ImgPipeline
|
|
test_save_load_optional_components = False
|
|
params = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"}
|
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"}
|
|
batch_params = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
|
|
image_params = IMAGE_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"depth_mask"})
|
|
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=5,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
attention_head_dim=(2, 4),
|
|
use_linear_projection=True,
|
|
)
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
backbone_config = {
|
|
"global_padding": "same",
|
|
"layer_type": "bottleneck",
|
|
"depths": [3, 4, 9],
|
|
"out_features": ["stage1", "stage2", "stage3"],
|
|
"embedding_dynamic_padding": True,
|
|
"hidden_sizes": [96, 192, 384, 768],
|
|
"num_groups": 2,
|
|
}
|
|
depth_estimator_config = DPTConfig(
|
|
image_size=32,
|
|
patch_size=16,
|
|
num_channels=3,
|
|
hidden_size=32,
|
|
num_hidden_layers=4,
|
|
backbone_out_indices=(0, 1, 2, 3),
|
|
num_attention_heads=4,
|
|
intermediate_size=37,
|
|
hidden_act="gelu",
|
|
hidden_dropout_prob=0.1,
|
|
attention_probs_dropout_prob=0.1,
|
|
is_decoder=False,
|
|
initializer_range=0.02,
|
|
is_hybrid=True,
|
|
backbone_config=backbone_config,
|
|
backbone_featmap_shape=[1, 384, 24, 24],
|
|
)
|
|
depth_estimator = DPTForDepthEstimation(depth_estimator_config).eval()
|
|
feature_extractor = DPTImageProcessor.from_pretrained("hf-internal-testing/tiny-random-DPTForDepthEstimation")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"depth_estimator": depth_estimator,
|
|
"feature_extractor": feature_extractor,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed))
|
|
image = image.cpu().permute(0, 2, 3, 1)[0]
|
|
image = Image.fromarray(np.uint8(image)).convert("RGB").resize((32, 32))
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"image": image,
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_save_load_local(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output = pipe(**inputs)[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir)
|
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
|
pipe_loaded.to(torch_device)
|
|
pipe_loaded.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_loaded = pipe_loaded(**inputs)[0]
|
|
|
|
max_diff = np.abs(output - output_loaded).max()
|
|
self.assertLess(max_diff, 1e-4)
|
|
|
|
@unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
|
|
@require_accelerator
|
|
def test_save_load_float16(self):
|
|
components = self.get_dummy_components()
|
|
for name, module in components.items():
|
|
if hasattr(module, "half"):
|
|
components[name] = module.to(torch_device).half()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output = pipe(**inputs)[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir)
|
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
|
|
pipe_loaded.to(torch_device)
|
|
pipe_loaded.set_progress_bar_config(disable=None)
|
|
|
|
for name, component in pipe_loaded.components.items():
|
|
if hasattr(component, "dtype"):
|
|
self.assertTrue(
|
|
component.dtype == torch.float16,
|
|
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
|
|
)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_loaded = pipe_loaded(**inputs)[0]
|
|
|
|
max_diff = np.abs(output - output_loaded).max()
|
|
self.assertLess(max_diff, 2e-2, "The output of the fp16 pipeline changed after saving and loading.")
|
|
|
|
@unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
|
|
@require_accelerator
|
|
def test_float16_inference(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
for name, module in components.items():
|
|
if hasattr(module, "half"):
|
|
components[name] = module.half()
|
|
pipe_fp16 = self.pipeline_class(**components)
|
|
pipe_fp16.to(torch_device)
|
|
pipe_fp16.set_progress_bar_config(disable=None)
|
|
|
|
output = pipe(**self.get_dummy_inputs(torch_device))[0]
|
|
output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]
|
|
|
|
max_diff = np.abs(output - output_fp16).max()
|
|
self.assertLess(max_diff, 1.3e-2, "The outputs of the fp16 and fp32 pipelines are too different.")
|
|
|
|
@require_accelerator
|
|
@require_accelerate_version_greater("0.14.0")
|
|
def test_cpu_offload_forward_pass(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_without_offload = pipe(**inputs)[0]
|
|
|
|
pipe.enable_sequential_cpu_offload(device=torch_device)
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output_with_offload = pipe(**inputs)[0]
|
|
|
|
max_diff = np.abs(output_with_offload - output_without_offload).max()
|
|
self.assertLess(max_diff, 1e-4, "CPU offloading should not affect the inference results")
|
|
|
|
def test_dict_tuple_outputs_equivalent(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
output = pipe(**self.get_dummy_inputs(torch_device))[0]
|
|
output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]
|
|
|
|
max_diff = np.abs(output - output_tuple).max()
|
|
self.assertLess(max_diff, 1e-4)
|
|
|
|
def test_stable_diffusion_depth2img_default_case(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
pipe = StableDiffusionDepth2ImgPipeline(**components)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
if torch_device == "mps":
|
|
expected_slice = np.array([0.6071, 0.5035, 0.4378, 0.5776, 0.5753, 0.4316, 0.4513, 0.5263, 0.4546])
|
|
else:
|
|
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
def test_stable_diffusion_depth2img_negative_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
pipe = StableDiffusionDepth2ImgPipeline(**components)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
negative_prompt = "french fries"
|
|
output = pipe(**inputs, negative_prompt=negative_prompt)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
if torch_device == "mps":
|
|
expected_slice = np.array([0.6296, 0.5125, 0.3890, 0.4456, 0.5955, 0.4621, 0.3810, 0.5310, 0.4626])
|
|
else:
|
|
expected_slice = np.array([0.6012, 0.4507, 0.3769, 0.4121, 0.5566, 0.4585, 0.3803, 0.5045, 0.4631])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
def test_stable_diffusion_depth2img_multiple_init_images(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
pipe = StableDiffusionDepth2ImgPipeline(**components)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["prompt"] = [inputs["prompt"]] * 2
|
|
inputs["image"] = 2 * [inputs["image"]]
|
|
image = pipe(**inputs).images
|
|
image_slice = image[-1, -3:, -3:, -1]
|
|
|
|
assert image.shape == (2, 32, 32, 3)
|
|
|
|
if torch_device == "mps":
|
|
expected_slice = np.array([0.6501, 0.5150, 0.4939, 0.6688, 0.5437, 0.5758, 0.5115, 0.4406, 0.4551])
|
|
else:
|
|
expected_slice = np.array([0.6557, 0.6214, 0.6254, 0.5775, 0.4785, 0.5949, 0.5904, 0.4785, 0.4730])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
def test_stable_diffusion_depth2img_pil(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
pipe = StableDiffusionDepth2ImgPipeline(**components)
|
|
pipe = pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
if torch_device == "mps":
|
|
expected_slice = np.array([0.53232, 0.47015, 0.40868, 0.45651, 0.4891, 0.4668, 0.4287, 0.48822, 0.47439])
|
|
else:
|
|
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
@skip_mps
|
|
def test_attention_slicing_forward_pass(self):
|
|
return super().test_attention_slicing_forward_pass()
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=7e-3)
|
|
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
extra_required_param_value_dict = {
|
|
"device": torch.device(torch_device).type,
|
|
"do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
|
|
}
|
|
return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class StableDiffusionDepth2ImgPipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
|
|
)
|
|
inputs = {
|
|
"prompt": "two tigers",
|
|
"image": init_image,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"strength": 0.75,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_depth2img_pipeline_default(self):
|
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-2-depth", safety_checker=None
|
|
)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
inputs = self.get_inputs()
|
|
image = pipe(**inputs).images
|
|
image_slice = image[0, 253:256, 253:256, -1].flatten()
|
|
|
|
assert image.shape == (1, 480, 640, 3)
|
|
expected_slice = np.array([0.5435, 0.4992, 0.3783, 0.4411, 0.5842, 0.4654, 0.3786, 0.5077, 0.4655])
|
|
|
|
assert np.abs(expected_slice - image_slice).max() < 6e-1
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
class StableDiffusionImg2ImgPipelineNightlyTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/depth2img/two_cats.png"
|
|
)
|
|
inputs = {
|
|
"prompt": "two tigers",
|
|
"image": init_image,
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"strength": 0.75,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_depth2img(self):
|
|
pipe = StableDiffusionDepth2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-2-depth")
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs()
|
|
image = pipe(**inputs).images[0]
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_depth2img/stable_diffusion_2_0_pndm.npy"
|
|
)
|
|
max_diff = np.abs(expected_image - image).max()
|
|
assert max_diff < 1e-3
|