mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* begin transformer conversion * refactor * refactor * refactor * refactor * refactor * refactor * update * add conversion script * add pipeline * make fix-copies * remove einops * update docs * gradient checkpointing * add transformer test * update * debug * remove prints * match sigmas * add vae pt. 1 * finish CV* vae * update * update * update * update * update * update * make fix-copies * update * make fix-copies * fix * update * update * make fix-copies * update * update tests * handle device and dtype for safety checker; required in latest diffusers * remove enable_gqa and use repeat_interleave instead * enforce safety checker; use dummy checker in fast tests * add review suggestion for ONNX export Co-Authored-By: Asfiya Baig <asfiyab@nvidia.com> * fix safety_checker issues when not passed explicitly We could either do what's done in this commit, or update the Cosmos examples to explicitly pass the safety checker * use cosmos guardrail package * auto format docs * update conversion script to support 14B models * update name CosmosPipeline -> CosmosTextToWorldPipeline * update docs * fix docs * fix group offload test failing for vae --------- Co-authored-by: Asfiya Baig <asfiyab@nvidia.com>
1.2 KiB
1.2 KiB
AutoencoderKLCosmos
Supported models:
The model can be loaded with the following code snippet.
from diffusers import AutoencoderKLCosmos
vae = AutoencoderKLCosmos.from_pretrained("nvidia/Cosmos-1.0-Tokenizer-CV8x8x8", subfolder="vae")
AutoencoderKLCosmos
autodoc AutoencoderKLCosmos - decode - encode - all
AutoencoderKLOutput
autodoc models.autoencoders.autoencoder_kl.AutoencoderKLOutput
DecoderOutput
autodoc models.autoencoders.vae.DecoderOutput