1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/models/transformers/test_models_transformer_easyanimate.py
Bubbliiiing 5e3b7d2d8a Add EasyAnimateV5.1 text-to-video, image-to-video, control-to-video generation model (#10626)
* Update EasyAnimate V5.1

* Add docs && add tests && Fix comments problems in transformer3d and vae

* delete comments and remove useless import

* delete process

* Update EXAMPLE_DOC_STRING

* rename transformer file

* make fix-copies

* make style

* refactor pt. 1

* update toctree.yml

* add model tests

* Update layer_norm for norm_added_q and norm_added_k in Attention

* Fix processor problem

* refactor vae

* Fix problem in comments

* refactor tiling; remove einops dependency

* fix docs path

* make fix-copies

* Update src/diffusers/pipelines/easyanimate/pipeline_easyanimate_control.py

* update _toctree.yml

* fix test

* update

* update

* update

* make fix-copies

* fix tests

---------

Co-authored-by: Aryan <aryan@huggingface.co>
Co-authored-by: Aryan <contact.aryanvs@gmail.com>
Co-authored-by: YiYi Xu <yixu310@gmail.com>
Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
2025-03-03 18:37:19 +05:30

88 lines
2.8 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import EasyAnimateTransformer3DModel
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
from ..test_modeling_common import ModelTesterMixin
enable_full_determinism()
class EasyAnimateTransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = EasyAnimateTransformer3DModel
main_input_name = "hidden_states"
uses_custom_attn_processor = True
@property
def dummy_input(self):
batch_size = 2
num_channels = 4
num_frames = 2
height = 16
width = 16
embedding_dim = 16
sequence_length = 16
hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device)
return {
"hidden_states": hidden_states,
"timestep": timestep,
"timestep_cond": None,
"encoder_hidden_states": encoder_hidden_states,
"encoder_hidden_states_t5": None,
"inpaint_latents": None,
"control_latents": None,
}
@property
def input_shape(self):
return (4, 2, 16, 16)
@property
def output_shape(self):
return (4, 2, 16, 16)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"attention_head_dim": 16,
"num_attention_heads": 2,
"in_channels": 4,
"mmdit_layers": 2,
"num_layers": 2,
"out_channels": 4,
"patch_size": 2,
"sample_height": 60,
"sample_width": 90,
"text_embed_dim": 16,
"time_embed_dim": 8,
"time_position_encoding_type": "3d_rope",
"timestep_activation_fn": "silu",
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_gradient_checkpointing_is_applied(self):
expected_set = {"EasyAnimateTransformer3DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)