1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/docs/source/en/api/pipelines/chroma.md
2025-06-14 00:17:17 +05:30

2.4 KiB

Chroma

LoRA MPS

Chroma is a text to image generation model based on Flux.

Original model checkpoints for Chroma can be found here.

Chroma can use all the same optimizations as Flux.

Inference (Single File)

The ChromaTransformer2DModel supports loading checkpoints in the original format. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.

The following example demonstrates how to run Chroma from a single file.

Then run the following example

import torch
from diffusers import ChromaTransformer2DModel, ChromaPipeline
from transformers import T5EncoderModel

bfl_repo = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16

transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v35.safetensors", torch_dtype=dtype)

text_encoder = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
tokenizer = T5Tokenizer.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)

pipe = ChromaPipeline.from_pretrained(bfl_repo, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=dtype)

pipe.enable_model_cpu_offload()

prompt = "A cat holding a sign that says hello world"
image = pipe(
    prompt,
    guidance_scale=4.0,
    output_type="pil",
    num_inference_steps=26,
    generator=torch.Generator("cpu").manual_seed(0)
).images[0]

image.save("image.png")

ChromaPipeline

autodoc ChromaPipeline - all - call