mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
2.4 KiB
2.4 KiB
Chroma
Chroma is a text to image generation model based on Flux.
Original model checkpoints for Chroma can be found here.
Chroma can use all the same optimizations as Flux.
Inference (Single File)
The ChromaTransformer2DModel supports loading checkpoints in the original format. This is also useful when trying to load finetunes or quantized versions of the models that have been published by the community.
The following example demonstrates how to run Chroma from a single file.
Then run the following example
import torch
from diffusers import ChromaTransformer2DModel, ChromaPipeline
from transformers import T5EncoderModel
bfl_repo = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
transformer = ChromaTransformer2DModel.from_single_file("https://huggingface.co/lodestones/Chroma/blob/main/chroma-unlocked-v35.safetensors", torch_dtype=dtype)
text_encoder = T5EncoderModel.from_pretrained(bfl_repo, subfolder="text_encoder_2", torch_dtype=dtype)
tokenizer = T5Tokenizer.from_pretrained(bfl_repo, subfolder="tokenizer_2", torch_dtype=dtype)
pipe = ChromaPipeline.from_pretrained(bfl_repo, transformer=transformer, text_encoder=text_encoder, tokenizer=tokenizer, torch_dtype=dtype)
pipe.enable_model_cpu_offload()
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt,
guidance_scale=4.0,
output_type="pil",
num_inference_steps=26,
generator=torch.Generator("cpu").manual_seed(0)
).images[0]
image.save("image.png")
ChromaPipeline
autodoc ChromaPipeline - all - call