mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
342 lines
12 KiB
Python
342 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 Latte Team and HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import inspect
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer, T5EncoderModel
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
FasterCacheConfig,
|
|
LattePipeline,
|
|
LatteTransformer3DModel,
|
|
PyramidAttentionBroadcastConfig,
|
|
)
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
numpy_cosine_similarity_distance,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import (
|
|
FasterCacheTesterMixin,
|
|
PipelineTesterMixin,
|
|
PyramidAttentionBroadcastTesterMixin,
|
|
to_np,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class LattePipelineFastTests(
|
|
PipelineTesterMixin, PyramidAttentionBroadcastTesterMixin, FasterCacheTesterMixin, unittest.TestCase
|
|
):
|
|
pipeline_class = LattePipeline
|
|
params = TEXT_TO_IMAGE_PARAMS - {"cross_attention_kwargs"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
|
|
required_optional_params = PipelineTesterMixin.required_optional_params
|
|
test_layerwise_casting = True
|
|
test_group_offloading = True
|
|
|
|
pab_config = PyramidAttentionBroadcastConfig(
|
|
spatial_attention_block_skip_range=2,
|
|
temporal_attention_block_skip_range=2,
|
|
cross_attention_block_skip_range=2,
|
|
spatial_attention_timestep_skip_range=(100, 700),
|
|
temporal_attention_timestep_skip_range=(100, 800),
|
|
cross_attention_timestep_skip_range=(100, 800),
|
|
spatial_attention_block_identifiers=["transformer_blocks"],
|
|
temporal_attention_block_identifiers=["temporal_transformer_blocks"],
|
|
cross_attention_block_identifiers=["transformer_blocks"],
|
|
)
|
|
|
|
faster_cache_config = FasterCacheConfig(
|
|
spatial_attention_block_skip_range=2,
|
|
temporal_attention_block_skip_range=2,
|
|
spatial_attention_timestep_skip_range=(-1, 901),
|
|
temporal_attention_timestep_skip_range=(-1, 901),
|
|
unconditional_batch_skip_range=2,
|
|
attention_weight_callback=lambda _: 0.5,
|
|
)
|
|
|
|
def get_dummy_components(self, num_layers: int = 1):
|
|
torch.manual_seed(0)
|
|
transformer = LatteTransformer3DModel(
|
|
sample_size=8,
|
|
num_layers=num_layers,
|
|
patch_size=2,
|
|
attention_head_dim=8,
|
|
num_attention_heads=3,
|
|
caption_channels=32,
|
|
in_channels=4,
|
|
cross_attention_dim=24,
|
|
out_channels=8,
|
|
attention_bias=True,
|
|
activation_fn="gelu-approximate",
|
|
num_embeds_ada_norm=1000,
|
|
norm_type="ada_norm_single",
|
|
norm_elementwise_affine=False,
|
|
norm_eps=1e-6,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL()
|
|
|
|
scheduler = DDIMScheduler()
|
|
text_encoder = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
components = {
|
|
"transformer": transformer.eval(),
|
|
"vae": vae.eval(),
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder.eval(),
|
|
"tokenizer": tokenizer,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"negative_prompt": "low quality",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"height": 8,
|
|
"width": 8,
|
|
"video_length": 1,
|
|
"output_type": "pt",
|
|
"clean_caption": False,
|
|
}
|
|
return inputs
|
|
|
|
def test_inference(self):
|
|
device = "cpu"
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
video = pipe(**inputs).frames
|
|
generated_video = video[0]
|
|
|
|
self.assertEqual(generated_video.shape, (1, 3, 8, 8))
|
|
expected_video = torch.randn(1, 3, 8, 8)
|
|
max_diff = np.abs(generated_video - expected_video).max()
|
|
self.assertLessEqual(max_diff, 1e10)
|
|
|
|
def test_callback_inputs(self):
|
|
sig = inspect.signature(self.pipeline_class.__call__)
|
|
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
|
|
has_callback_step_end = "callback_on_step_end" in sig.parameters
|
|
|
|
if not (has_callback_tensor_inputs and has_callback_step_end):
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe = pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
self.assertTrue(
|
|
hasattr(pipe, "_callback_tensor_inputs"),
|
|
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
|
|
)
|
|
|
|
def callback_inputs_subset(pipe, i, t, callback_kwargs):
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
def callback_inputs_all(pipe, i, t, callback_kwargs):
|
|
for tensor_name in pipe._callback_tensor_inputs:
|
|
assert tensor_name in callback_kwargs
|
|
|
|
# iterate over callback args
|
|
for tensor_name, tensor_value in callback_kwargs.items():
|
|
# check that we're only passing in allowed tensor inputs
|
|
assert tensor_name in pipe._callback_tensor_inputs
|
|
|
|
return callback_kwargs
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
# Test passing in a subset
|
|
inputs["callback_on_step_end"] = callback_inputs_subset
|
|
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
|
|
output = pipe(**inputs)[0]
|
|
|
|
# Test passing in a everything
|
|
inputs["callback_on_step_end"] = callback_inputs_all
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
|
|
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
|
|
is_last = i == (pipe.num_timesteps - 1)
|
|
if is_last:
|
|
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
|
|
return callback_kwargs
|
|
|
|
inputs["callback_on_step_end"] = callback_inputs_change_tensor
|
|
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
|
|
output = pipe(**inputs)[0]
|
|
assert output.abs().sum() < 1e10
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(batch_size=3, expected_max_diff=1e-3)
|
|
|
|
@unittest.skip("Not supported.")
|
|
def test_attention_slicing_forward_pass(self):
|
|
pass
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
super()._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=False)
|
|
|
|
@unittest.skip("Test not supported because `encode_prompt()` has multiple returns.")
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
pass
|
|
|
|
def test_save_load_optional_components(self):
|
|
if not hasattr(self.pipeline_class, "_optional_components"):
|
|
return
|
|
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
|
|
for component in pipe.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
|
|
prompt = inputs["prompt"]
|
|
generator = inputs["generator"]
|
|
|
|
(
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
) = pipe.encode_prompt(prompt)
|
|
|
|
# inputs with prompt converted to embeddings
|
|
inputs = {
|
|
"prompt_embeds": prompt_embeds,
|
|
"negative_prompt": None,
|
|
"negative_prompt_embeds": negative_prompt_embeds,
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"height": 8,
|
|
"width": 8,
|
|
"video_length": 1,
|
|
"mask_feature": False,
|
|
"output_type": "pt",
|
|
"clean_caption": False,
|
|
}
|
|
|
|
# set all optional components to None
|
|
for optional_component in pipe._optional_components:
|
|
setattr(pipe, optional_component, None)
|
|
|
|
output = pipe(**inputs)[0]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
pipe.save_pretrained(tmpdir, safe_serialization=False)
|
|
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
|
|
pipe_loaded.to(torch_device)
|
|
|
|
for component in pipe_loaded.components.values():
|
|
if hasattr(component, "set_default_attn_processor"):
|
|
component.set_default_attn_processor()
|
|
|
|
pipe_loaded.set_progress_bar_config(disable=None)
|
|
|
|
for optional_component in pipe._optional_components:
|
|
self.assertTrue(
|
|
getattr(pipe_loaded, optional_component) is None,
|
|
f"`{optional_component}` did not stay set to None after loading.",
|
|
)
|
|
|
|
output_loaded = pipe_loaded(**inputs)[0]
|
|
|
|
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
|
|
self.assertLess(max_diff, 1.0)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class LattePipelineIntegrationTests(unittest.TestCase):
|
|
prompt = "A painting of a squirrel eating a burger."
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_latte(self):
|
|
generator = torch.Generator("cpu").manual_seed(0)
|
|
|
|
pipe = LattePipeline.from_pretrained("maxin-cn/Latte-1", torch_dtype=torch.float16)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
prompt = self.prompt
|
|
|
|
videos = pipe(
|
|
prompt=prompt,
|
|
height=512,
|
|
width=512,
|
|
generator=generator,
|
|
num_inference_steps=2,
|
|
clean_caption=False,
|
|
).frames
|
|
|
|
video = videos[0]
|
|
expected_video = torch.randn(1, 512, 512, 3).numpy()
|
|
|
|
max_diff = numpy_cosine_similarity_distance(video.flatten(), expected_video)
|
|
assert max_diff < 1e-3, f"Max diff is too high. got {video.flatten()}"
|