mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
366 lines
13 KiB
Python
366 lines
13 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc and The InstantX Team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, T5EncoderModel
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
FlowMatchEulerDiscreteScheduler,
|
|
SD3Transformer2DModel,
|
|
StableDiffusion3ControlNetPipeline,
|
|
)
|
|
from diffusers.models import SD3ControlNetModel, SD3MultiControlNetModel
|
|
from diffusers.utils import load_image
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
numpy_cosine_similarity_distance,
|
|
require_big_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusion3ControlNetPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
|
|
pipeline_class = StableDiffusion3ControlNetPipeline
|
|
params = frozenset(
|
|
[
|
|
"prompt",
|
|
"height",
|
|
"width",
|
|
"guidance_scale",
|
|
"negative_prompt",
|
|
"prompt_embeds",
|
|
"negative_prompt_embeds",
|
|
]
|
|
)
|
|
batch_params = frozenset(["prompt", "negative_prompt"])
|
|
test_layerwise_casting = True
|
|
test_group_offloading = True
|
|
|
|
def get_dummy_components(
|
|
self, num_controlnet_layers: int = 3, qk_norm: Optional[str] = "rms_norm", use_dual_attention=False
|
|
):
|
|
torch.manual_seed(0)
|
|
transformer = SD3Transformer2DModel(
|
|
sample_size=32,
|
|
patch_size=1,
|
|
in_channels=8,
|
|
num_layers=4,
|
|
attention_head_dim=8,
|
|
num_attention_heads=4,
|
|
joint_attention_dim=32,
|
|
caption_projection_dim=32,
|
|
pooled_projection_dim=64,
|
|
out_channels=8,
|
|
qk_norm=qk_norm,
|
|
dual_attention_layers=() if not use_dual_attention else (0, 1),
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
controlnet = SD3ControlNetModel(
|
|
sample_size=32,
|
|
patch_size=1,
|
|
in_channels=8,
|
|
num_layers=num_controlnet_layers,
|
|
attention_head_dim=8,
|
|
num_attention_heads=4,
|
|
joint_attention_dim=32,
|
|
caption_projection_dim=32,
|
|
pooled_projection_dim=64,
|
|
out_channels=8,
|
|
qk_norm=qk_norm,
|
|
dual_attention_layers=() if not use_dual_attention else (0,),
|
|
)
|
|
|
|
clip_text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
hidden_act="gelu",
|
|
projection_dim=32,
|
|
)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_2 = CLIPTextModelWithProjection(clip_text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_3 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
tokenizer_3 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")
|
|
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
block_out_channels=(4,),
|
|
layers_per_block=1,
|
|
latent_channels=8,
|
|
norm_num_groups=1,
|
|
use_quant_conv=False,
|
|
use_post_quant_conv=False,
|
|
shift_factor=0.0609,
|
|
scaling_factor=1.5035,
|
|
)
|
|
|
|
scheduler = FlowMatchEulerDiscreteScheduler()
|
|
|
|
return {
|
|
"scheduler": scheduler,
|
|
"text_encoder": text_encoder,
|
|
"text_encoder_2": text_encoder_2,
|
|
"text_encoder_3": text_encoder_3,
|
|
"tokenizer": tokenizer,
|
|
"tokenizer_2": tokenizer_2,
|
|
"tokenizer_3": tokenizer_3,
|
|
"transformer": transformer,
|
|
"vae": vae,
|
|
"controlnet": controlnet,
|
|
"image_encoder": None,
|
|
"feature_extractor": None,
|
|
}
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device="cpu").manual_seed(seed)
|
|
|
|
control_image = randn_tensor(
|
|
(1, 3, 32, 32),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
dtype=torch.float16,
|
|
)
|
|
|
|
controlnet_conditioning_scale = 0.5
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 5.0,
|
|
"output_type": "np",
|
|
"control_image": control_image,
|
|
"controlnet_conditioning_scale": controlnet_conditioning_scale,
|
|
}
|
|
|
|
return inputs
|
|
|
|
def run_pipe(self, components, use_sd35=False):
|
|
sd_pipe = StableDiffusion3ControlNetPipeline(**components)
|
|
sd_pipe = sd_pipe.to(torch_device, dtype=torch.float16)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
output = sd_pipe(**inputs)
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
if not use_sd35:
|
|
expected_slice = np.array([0.5767, 0.7100, 0.5981, 0.5674, 0.5952, 0.4102, 0.5093, 0.5044, 0.6030])
|
|
else:
|
|
expected_slice = np.array([1.0000, 0.9072, 0.4209, 0.2744, 0.5737, 0.3840, 0.6113, 0.6250, 0.6328])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2, (
|
|
f"Expected: {expected_slice}, got: {image_slice.flatten()}"
|
|
)
|
|
|
|
def test_controlnet_sd3(self):
|
|
components = self.get_dummy_components()
|
|
self.run_pipe(components)
|
|
|
|
def test_controlnet_sd35(self):
|
|
components = self.get_dummy_components(num_controlnet_layers=1, qk_norm="rms_norm", use_dual_attention=True)
|
|
self.run_pipe(components, use_sd35=True)
|
|
|
|
@unittest.skip("xFormersAttnProcessor does not work with SD3 Joint Attention")
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
pass
|
|
|
|
|
|
@slow
|
|
@require_big_accelerator
|
|
class StableDiffusion3ControlNetPipelineSlowTests(unittest.TestCase):
|
|
pipeline_class = StableDiffusion3ControlNetPipeline
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_canny(self):
|
|
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
|
|
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
|
|
n_prompt = "NSFW, nude, naked, porn, ugly"
|
|
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
|
|
|
output = pipe(
|
|
prompt,
|
|
negative_prompt=n_prompt,
|
|
control_image=control_image,
|
|
controlnet_conditioning_scale=0.5,
|
|
guidance_scale=5.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
generator=generator,
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (1024, 1024, 3)
|
|
|
|
original_image = image[-3:, -3:, -1].flatten()
|
|
|
|
expected_image = np.array([0.7314, 0.7075, 0.6611, 0.7539, 0.7563, 0.6650, 0.6123, 0.7275, 0.7222])
|
|
|
|
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
|
|
|
|
def test_pose(self):
|
|
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Pose", torch_dtype=torch.float16)
|
|
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
|
|
n_prompt = "NSFW, nude, naked, porn, ugly"
|
|
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Pose/resolve/main/pose.jpg")
|
|
|
|
output = pipe(
|
|
prompt,
|
|
negative_prompt=n_prompt,
|
|
control_image=control_image,
|
|
controlnet_conditioning_scale=0.5,
|
|
guidance_scale=5.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
generator=generator,
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (1024, 1024, 3)
|
|
|
|
original_image = image[-3:, -3:, -1].flatten()
|
|
expected_image = np.array([0.9048, 0.8740, 0.8936, 0.8516, 0.8799, 0.9360, 0.8379, 0.8408, 0.8652])
|
|
|
|
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
|
|
|
|
def test_tile(self):
|
|
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Tile", torch_dtype=torch.float16)
|
|
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = 'Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text "InstantX" on image'
|
|
n_prompt = "NSFW, nude, naked, porn, ugly"
|
|
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Tile/resolve/main/tile.jpg")
|
|
|
|
output = pipe(
|
|
prompt,
|
|
negative_prompt=n_prompt,
|
|
control_image=control_image,
|
|
controlnet_conditioning_scale=0.5,
|
|
guidance_scale=5.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
generator=generator,
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (1024, 1024, 3)
|
|
|
|
original_image = image[-3:, -3:, -1].flatten()
|
|
expected_image = np.array([0.6699, 0.6836, 0.6226, 0.6572, 0.7310, 0.6646, 0.6650, 0.6694, 0.6011])
|
|
|
|
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
|
|
|
|
def test_multi_controlnet(self):
|
|
controlnet = SD3ControlNetModel.from_pretrained("InstantX/SD3-Controlnet-Canny", torch_dtype=torch.float16)
|
|
controlnet = SD3MultiControlNetModel([controlnet, controlnet])
|
|
|
|
pipe = StableDiffusion3ControlNetPipeline.from_pretrained(
|
|
"stabilityai/stable-diffusion-3-medium-diffusers", controlnet=controlnet, torch_dtype=torch.float16
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
prompt = "Anime style illustration of a girl wearing a suit. A moon in sky. In the background we see a big rain approaching. text 'InstantX' on image"
|
|
n_prompt = "NSFW, nude, naked, porn, ugly"
|
|
control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
|
|
|
output = pipe(
|
|
prompt,
|
|
negative_prompt=n_prompt,
|
|
control_image=[control_image, control_image],
|
|
controlnet_conditioning_scale=[0.25, 0.25],
|
|
guidance_scale=5.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
generator=generator,
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (1024, 1024, 3)
|
|
|
|
original_image = image[-3:, -3:, -1].flatten()
|
|
expected_image = np.array([0.7207, 0.7041, 0.6543, 0.7500, 0.7490, 0.6592, 0.6001, 0.7168, 0.7231])
|
|
|
|
assert numpy_cosine_similarity_distance(original_image.flatten(), expected_image) < 1e-2
|