mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* update
* update
* update
* update
* update
* merge main
* Revert "merge main"
This reverts commit 65efbcead5.
576 lines
20 KiB
Python
576 lines
20 KiB
Python
# coding=utf-8
|
|
# Copyright 2025 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# This model implementation is heavily based on:
|
|
|
|
import gc
|
|
import random
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
ControlNetModel,
|
|
DDIMScheduler,
|
|
StableDiffusionControlNetInpaintPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.pipelines.controlnet.pipeline_controlnet import MultiControlNetModel
|
|
from diffusers.utils import load_image
|
|
from diffusers.utils.import_utils import is_xformers_available
|
|
from diffusers.utils.torch_utils import randn_tensor
|
|
|
|
from ...testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
floats_tensor,
|
|
load_numpy,
|
|
numpy_cosine_similarity_distance,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
from ..pipeline_params import (
|
|
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
|
|
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
|
|
TEXT_TO_IMAGE_IMAGE_PARAMS,
|
|
)
|
|
from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class ControlNetInpaintPipelineFastTests(
|
|
PipelineLatentTesterMixin, PipelineKarrasSchedulerTesterMixin, PipelineTesterMixin, unittest.TestCase
|
|
):
|
|
pipeline_class = StableDiffusionControlNetInpaintPipeline
|
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
|
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
|
|
image_params = frozenset({"control_image"}) # skip `image` and `mask` for now, only test for control_image
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=9,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
torch.manual_seed(0)
|
|
controlnet = ControlNetModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
in_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
cross_attention_dim=32,
|
|
conditioning_embedding_out_channels=(16, 32),
|
|
)
|
|
torch.manual_seed(0)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"controlnet": controlnet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
controlnet_embedder_scale_factor = 2
|
|
control_image = randn_tensor(
|
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
)
|
|
init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
|
init_image = init_image.cpu().permute(0, 2, 3, 1)[0]
|
|
|
|
image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64))
|
|
mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64))
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
"image": image,
|
|
"mask_image": mask_image,
|
|
"control_image": control_image,
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_attention_slicing_forward_pass(self):
|
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
|
|
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
extra_required_param_value_dict = {
|
|
"device": torch.device(torch_device).type,
|
|
"do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
|
|
}
|
|
return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)
|
|
|
|
|
|
class ControlNetSimpleInpaintPipelineFastTests(ControlNetInpaintPipelineFastTests):
|
|
pipeline_class = StableDiffusionControlNetInpaintPipeline
|
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
|
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
|
|
image_params = frozenset([])
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
torch.manual_seed(0)
|
|
controlnet = ControlNetModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
in_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
cross_attention_dim=32,
|
|
conditioning_embedding_out_channels=(16, 32),
|
|
)
|
|
torch.manual_seed(0)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"controlnet": controlnet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
|
|
class MultiControlNetInpaintPipelineFastTests(
|
|
PipelineTesterMixin, PipelineKarrasSchedulerTesterMixin, unittest.TestCase
|
|
):
|
|
pipeline_class = StableDiffusionControlNetInpaintPipeline
|
|
params = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
|
|
batch_params = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS
|
|
|
|
supports_dduf = False
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=9,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
torch.manual_seed(0)
|
|
|
|
def init_weights(m):
|
|
if isinstance(m, torch.nn.Conv2d):
|
|
torch.nn.init.normal_(m.weight)
|
|
m.bias.data.fill_(1.0)
|
|
|
|
controlnet1 = ControlNetModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
in_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
cross_attention_dim=32,
|
|
conditioning_embedding_out_channels=(16, 32),
|
|
)
|
|
controlnet1.controlnet_down_blocks.apply(init_weights)
|
|
|
|
torch.manual_seed(0)
|
|
controlnet2 = ControlNetModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
in_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
cross_attention_dim=32,
|
|
conditioning_embedding_out_channels=(16, 32),
|
|
)
|
|
controlnet2.controlnet_down_blocks.apply(init_weights)
|
|
|
|
torch.manual_seed(0)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
controlnet = MultiControlNetModel([controlnet1, controlnet2])
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"controlnet": controlnet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
|
|
controlnet_embedder_scale_factor = 2
|
|
|
|
control_image = [
|
|
randn_tensor(
|
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
),
|
|
randn_tensor(
|
|
(1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor),
|
|
generator=generator,
|
|
device=torch.device(device),
|
|
),
|
|
]
|
|
init_image = floats_tensor((1, 3, 32, 32), rng=random.Random(seed)).to(device)
|
|
init_image = init_image.cpu().permute(0, 2, 3, 1)[0]
|
|
|
|
image = Image.fromarray(np.uint8(init_image)).convert("RGB").resize((64, 64))
|
|
mask_image = Image.fromarray(np.uint8(init_image + 4)).convert("RGB").resize((64, 64))
|
|
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
"image": image,
|
|
"mask_image": mask_image,
|
|
"control_image": control_image,
|
|
}
|
|
|
|
return inputs
|
|
|
|
def test_control_guidance_switch(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
|
|
scale = 10.0
|
|
steps = 4
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_1 = pipe(**inputs)[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_2 = pipe(**inputs, control_guidance_start=0.1, control_guidance_end=0.2)[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_3 = pipe(**inputs, control_guidance_start=[0.1, 0.3], control_guidance_end=[0.2, 0.7])[0]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["num_inference_steps"] = steps
|
|
inputs["controlnet_conditioning_scale"] = scale
|
|
output_4 = pipe(**inputs, control_guidance_start=0.4, control_guidance_end=[0.5, 0.8])[0]
|
|
|
|
# make sure that all outputs are different
|
|
assert np.sum(np.abs(output_1 - output_2)) > 1e-3
|
|
assert np.sum(np.abs(output_1 - output_3)) > 1e-3
|
|
assert np.sum(np.abs(output_1 - output_4)) > 1e-3
|
|
|
|
def test_attention_slicing_forward_pass(self):
|
|
return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3)
|
|
|
|
@unittest.skipIf(
|
|
torch_device != "cuda" or not is_xformers_available(),
|
|
reason="XFormers attention is only available with CUDA and `xformers` installed",
|
|
)
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3)
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
self._test_inference_batch_single_identical(expected_max_diff=2e-3)
|
|
|
|
def test_save_pretrained_raise_not_implemented_exception(self):
|
|
components = self.get_dummy_components()
|
|
pipe = self.pipeline_class(**components)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
with tempfile.TemporaryDirectory() as tmpdir:
|
|
try:
|
|
# save_pretrained is not implemented for Multi-ControlNet
|
|
pipe.save_pretrained(tmpdir)
|
|
except NotImplementedError:
|
|
pass
|
|
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
extra_required_param_value_dict = {
|
|
"device": torch.device(torch_device).type,
|
|
"do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
|
|
}
|
|
return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class ControlNetInpaintPipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_canny(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny")
|
|
|
|
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
|
"botp/stable-diffusion-v1-5-inpainting", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0)
|
|
image = load_image(
|
|
"https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
|
|
).resize((512, 512))
|
|
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main"
|
|
"/stable_diffusion_inpaint/input_bench_mask.png"
|
|
).resize((512, 512))
|
|
|
|
prompt = "pitch black hole"
|
|
|
|
control_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png"
|
|
).resize((512, 512))
|
|
|
|
output = pipe(
|
|
prompt,
|
|
image=image,
|
|
mask_image=mask_image,
|
|
control_image=control_image,
|
|
generator=generator,
|
|
output_type="np",
|
|
num_inference_steps=3,
|
|
)
|
|
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/inpaint.npy"
|
|
)
|
|
|
|
assert np.abs(expected_image - image).max() < 9e-2
|
|
|
|
def test_inpaint(self):
|
|
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint")
|
|
|
|
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
|
"stable-diffusion-v1-5/stable-diffusion-v1-5", safety_checker=None, controlnet=controlnet
|
|
)
|
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
|
pipe.enable_model_cpu_offload(device=torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.Generator(device="cpu").manual_seed(33)
|
|
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy.png"
|
|
)
|
|
init_image = init_image.resize((512, 512))
|
|
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_inpaint/boy_mask.png"
|
|
)
|
|
mask_image = mask_image.resize((512, 512))
|
|
|
|
prompt = "a handsome man with ray-ban sunglasses"
|
|
|
|
def make_inpaint_condition(image, image_mask):
|
|
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
|
|
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
|
|
|
|
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
|
|
image[image_mask > 0.5] = -1.0 # set as masked pixel
|
|
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
return image
|
|
|
|
control_image = make_inpaint_condition(init_image, mask_image)
|
|
|
|
output = pipe(
|
|
prompt,
|
|
image=init_image,
|
|
mask_image=mask_image,
|
|
control_image=control_image,
|
|
guidance_scale=9.0,
|
|
eta=1.0,
|
|
generator=generator,
|
|
num_inference_steps=20,
|
|
output_type="np",
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/boy_ray_ban.npy"
|
|
)
|
|
|
|
assert numpy_cosine_similarity_distance(expected_image.flatten(), image.flatten()) < 1e-2
|