mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* Add initial template * Second template * feat: Add TextEmbeddingModule to AnyTextPipeline * feat: Add AuxiliaryLatentModule template to AnyTextPipeline * Add bert tokenizer from the anytext repo for now * feat: Update AnyTextPipeline's modify_prompt method This commit adds improvements to the modify_prompt method in the AnyTextPipeline class. The method now handles special characters and replaces selected string prompts with a placeholder. Additionally, it includes a check for Chinese text and translation using the trans_pipe. * Fill in the `forward` pass of `AuxiliaryLatentModule` * `make style && make quality` * `chore: Update bert_tokenizer.py with a TODO comment suggesting the use of the transformers library` * Update error handling to raise and logging * Add `create_glyph_lines` function into `TextEmbeddingModule` * make style * Up * Up * Up * Up * Remove several comments * refactor: Remove ControlNetConditioningEmbedding and update code accordingly * Up * Up * up * refactor: Update AnyTextPipeline to include new optional parameters * up * feat: Add OCR model and its components * chore: Update `TextEmbeddingModule` to include OCR model components and dependencies * chore: Update `AuxiliaryLatentModule` to include VAE model and its dependencies for masked image in the editing task * `make style` * refactor: Update `AnyTextPipeline`'s docstring * Update `AuxiliaryLatentModule` to include info dictionary so that text processing is done once * simplify * `make style` * Converting `TextEmbeddingModule` to ordinary `encode_prompt()` function * Simplify for now * `make style` * Up * feat: Add scripts to convert AnyText controlnet to diffusers * `make style` * Fix: Move glyph rendering to `TextEmbeddingModule` from `AuxiliaryLatentModule` * make style * Up * Simplify * Up * feat: Add safetensors module for loading model file * Fix device issues * Up * Up * refactor: Simplify * refactor: Simplify code for loading models and handling data types * `make style` * refactor: Update to() method in FrozenCLIPEmbedderT3 and TextEmbeddingModule * refactor: Update dtype in embedding_manager.py to match proj.weight * Up * Add attribution and adaptation information to pipeline_anytext.py * Update usage example * Will refactor `controlnet_cond_embedding` initialization * Add `AnyTextControlNetConditioningEmbedding` template * Refactor organization * style * style * Move custom blocks from `AuxiliaryLatentModule` to `AnyTextControlNetConditioningEmbedding` * Follow one-file policy * style * [Docs] Update README and pipeline_anytext.py to use AnyTextControlNetModel * [Docs] Update import statement for AnyTextControlNetModel in pipeline_anytext.py * [Fix] Update import path for ControlNetModel, ControlNetOutput in anytext_controlnet.py * Refactor AnyTextControlNet to use configurable conditioning embedding channels * Complete control net conditioning embedding in AnyTextControlNetModel * up * [FIX] Ensure embeddings use correct device in AnyTextControlNetModel * up * up * style * [UPDATE] Revise README and example code for AnyTextPipeline integration with DiffusionPipeline * [UPDATE] Update example code in anytext.py to use correct font file and improve clarity * down * [UPDATE] Refactor BasicTokenizer usage to a new Checker class for text processing * update pillow * [UPDATE] Remove commented-out code and unnecessary docstring in anytext.py and anytext_controlnet.py for improved clarity * [REMOVE] Delete frozen_clip_embedder_t3.py as it is in the anytext.py file * [UPDATE] Replace edict with dict for configuration in anytext.py and RecModel.py for consistency * 🆙 * style * [UPDATE] Revise README.md for clarity, remove unused imports in anytext.py, and add author credits in anytext_controlnet.py * style * Update examples/research_projects/anytext/README.md Co-authored-by: Aryan <contact.aryanvs@gmail.com> * Remove commented-out image preparation code in AnyTextPipeline * Remove unnecessary blank line in README.md
210 lines
6.3 KiB
Python
Executable File
210 lines
6.3 KiB
Python
Executable File
import torch
|
|
from torch import nn
|
|
|
|
from .RecSVTR import Block
|
|
|
|
|
|
class Swish(nn.Module):
|
|
def __int__(self):
|
|
super(Swish, self).__int__()
|
|
|
|
def forward(self, x):
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
class Im2Im(nn.Module):
|
|
def __init__(self, in_channels, **kwargs):
|
|
super().__init__()
|
|
self.out_channels = in_channels
|
|
|
|
def forward(self, x):
|
|
return x
|
|
|
|
|
|
class Im2Seq(nn.Module):
|
|
def __init__(self, in_channels, **kwargs):
|
|
super().__init__()
|
|
self.out_channels = in_channels
|
|
|
|
def forward(self, x):
|
|
B, C, H, W = x.shape
|
|
# assert H == 1
|
|
x = x.reshape(B, C, H * W)
|
|
x = x.permute((0, 2, 1))
|
|
return x
|
|
|
|
|
|
class EncoderWithRNN(nn.Module):
|
|
def __init__(self, in_channels, **kwargs):
|
|
super(EncoderWithRNN, self).__init__()
|
|
hidden_size = kwargs.get("hidden_size", 256)
|
|
self.out_channels = hidden_size * 2
|
|
self.lstm = nn.LSTM(in_channels, hidden_size, bidirectional=True, num_layers=2, batch_first=True)
|
|
|
|
def forward(self, x):
|
|
self.lstm.flatten_parameters()
|
|
x, _ = self.lstm(x)
|
|
return x
|
|
|
|
|
|
class SequenceEncoder(nn.Module):
|
|
def __init__(self, in_channels, encoder_type="rnn", **kwargs):
|
|
super(SequenceEncoder, self).__init__()
|
|
self.encoder_reshape = Im2Seq(in_channels)
|
|
self.out_channels = self.encoder_reshape.out_channels
|
|
self.encoder_type = encoder_type
|
|
if encoder_type == "reshape":
|
|
self.only_reshape = True
|
|
else:
|
|
support_encoder_dict = {"reshape": Im2Seq, "rnn": EncoderWithRNN, "svtr": EncoderWithSVTR}
|
|
assert encoder_type in support_encoder_dict, "{} must in {}".format(
|
|
encoder_type, support_encoder_dict.keys()
|
|
)
|
|
|
|
self.encoder = support_encoder_dict[encoder_type](self.encoder_reshape.out_channels, **kwargs)
|
|
self.out_channels = self.encoder.out_channels
|
|
self.only_reshape = False
|
|
|
|
def forward(self, x):
|
|
if self.encoder_type != "svtr":
|
|
x = self.encoder_reshape(x)
|
|
if not self.only_reshape:
|
|
x = self.encoder(x)
|
|
return x
|
|
else:
|
|
x = self.encoder(x)
|
|
x = self.encoder_reshape(x)
|
|
return x
|
|
|
|
|
|
class ConvBNLayer(nn.Module):
|
|
def __init__(
|
|
self, in_channels, out_channels, kernel_size=3, stride=1, padding=0, bias_attr=False, groups=1, act=nn.GELU
|
|
):
|
|
super().__init__()
|
|
self.conv = nn.Conv2d(
|
|
in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
groups=groups,
|
|
# weight_attr=paddle.ParamAttr(initializer=nn.initializer.KaimingUniform()),
|
|
bias=bias_attr,
|
|
)
|
|
self.norm = nn.BatchNorm2d(out_channels)
|
|
self.act = Swish()
|
|
|
|
def forward(self, inputs):
|
|
out = self.conv(inputs)
|
|
out = self.norm(out)
|
|
out = self.act(out)
|
|
return out
|
|
|
|
|
|
class EncoderWithSVTR(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_channels,
|
|
dims=64, # XS
|
|
depth=2,
|
|
hidden_dims=120,
|
|
use_guide=False,
|
|
num_heads=8,
|
|
qkv_bias=True,
|
|
mlp_ratio=2.0,
|
|
drop_rate=0.1,
|
|
attn_drop_rate=0.1,
|
|
drop_path=0.0,
|
|
qk_scale=None,
|
|
):
|
|
super(EncoderWithSVTR, self).__init__()
|
|
self.depth = depth
|
|
self.use_guide = use_guide
|
|
self.conv1 = ConvBNLayer(in_channels, in_channels // 8, padding=1, act="swish")
|
|
self.conv2 = ConvBNLayer(in_channels // 8, hidden_dims, kernel_size=1, act="swish")
|
|
|
|
self.svtr_block = nn.ModuleList(
|
|
[
|
|
Block(
|
|
dim=hidden_dims,
|
|
num_heads=num_heads,
|
|
mixer="Global",
|
|
HW=None,
|
|
mlp_ratio=mlp_ratio,
|
|
qkv_bias=qkv_bias,
|
|
qk_scale=qk_scale,
|
|
drop=drop_rate,
|
|
act_layer="swish",
|
|
attn_drop=attn_drop_rate,
|
|
drop_path=drop_path,
|
|
norm_layer="nn.LayerNorm",
|
|
epsilon=1e-05,
|
|
prenorm=False,
|
|
)
|
|
for i in range(depth)
|
|
]
|
|
)
|
|
self.norm = nn.LayerNorm(hidden_dims, eps=1e-6)
|
|
self.conv3 = ConvBNLayer(hidden_dims, in_channels, kernel_size=1, act="swish")
|
|
# last conv-nxn, the input is concat of input tensor and conv3 output tensor
|
|
self.conv4 = ConvBNLayer(2 * in_channels, in_channels // 8, padding=1, act="swish")
|
|
|
|
self.conv1x1 = ConvBNLayer(in_channels // 8, dims, kernel_size=1, act="swish")
|
|
self.out_channels = dims
|
|
self.apply(self._init_weights)
|
|
|
|
def _init_weights(self, m):
|
|
# weight initialization
|
|
if isinstance(m, nn.Conv2d):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
|
if m.bias is not None:
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, nn.BatchNorm2d):
|
|
nn.init.ones_(m.weight)
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, nn.Linear):
|
|
nn.init.normal_(m.weight, 0, 0.01)
|
|
if m.bias is not None:
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, nn.ConvTranspose2d):
|
|
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
|
if m.bias is not None:
|
|
nn.init.zeros_(m.bias)
|
|
elif isinstance(m, nn.LayerNorm):
|
|
nn.init.ones_(m.weight)
|
|
nn.init.zeros_(m.bias)
|
|
|
|
def forward(self, x):
|
|
# for use guide
|
|
if self.use_guide:
|
|
z = x.clone()
|
|
z.stop_gradient = True
|
|
else:
|
|
z = x
|
|
# for short cut
|
|
h = z
|
|
# reduce dim
|
|
z = self.conv1(z)
|
|
z = self.conv2(z)
|
|
# SVTR global block
|
|
B, C, H, W = z.shape
|
|
z = z.flatten(2).permute(0, 2, 1)
|
|
|
|
for blk in self.svtr_block:
|
|
z = blk(z)
|
|
|
|
z = self.norm(z)
|
|
# last stage
|
|
z = z.reshape([-1, H, W, C]).permute(0, 3, 1, 2)
|
|
z = self.conv3(z)
|
|
z = torch.cat((h, z), dim=1)
|
|
z = self.conv1x1(self.conv4(z))
|
|
|
|
return z
|
|
|
|
|
|
if __name__ == "__main__":
|
|
svtrRNN = EncoderWithSVTR(56)
|
|
print(svtrRNN)
|