mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* enable several pipeline integration tests on xpu Signed-off-by: Yao Matrix <matrix.yao@intel.com> * fix style Signed-off-by: Yao Matrix <matrix.yao@intel.com> * update per comments Signed-off-by: Matrix Yao <matrix.yao@intel.com> --------- Signed-off-by: Yao Matrix <matrix.yao@intel.com> Signed-off-by: Matrix Yao <matrix.yao@intel.com>
246 lines
8.0 KiB
Python
246 lines
8.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
DEISMultistepScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
EulerDiscreteScheduler,
|
|
StableDiffusionSAGPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.utils.testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
nightly,
|
|
require_torch_accelerator,
|
|
torch_device,
|
|
)
|
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import (
|
|
IPAdapterTesterMixin,
|
|
PipelineFromPipeTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineTesterMixin,
|
|
)
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusionSAGPipelineFastTests(
|
|
IPAdapterTesterMixin,
|
|
PipelineLatentTesterMixin,
|
|
PipelineTesterMixin,
|
|
PipelineFromPipeTesterMixin,
|
|
unittest.TestCase,
|
|
):
|
|
pipeline_class = StableDiffusionSAGPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
image_latents_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(4, 8),
|
|
layers_per_block=2,
|
|
sample_size=8,
|
|
norm_num_groups=1,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=8,
|
|
)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[4, 8],
|
|
norm_num_groups=1,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=8,
|
|
num_hidden_layers=2,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": ".",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 1.0,
|
|
"sag_scale": 1.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_inference_batch_single_identical(self):
|
|
super().test_inference_batch_single_identical(expected_max_diff=3e-3)
|
|
|
|
@unittest.skip("Not necessary to test here.")
|
|
def test_xformers_attention_forwardGenerator_pass(self):
|
|
pass
|
|
|
|
def test_pipeline_different_schedulers(self):
|
|
pipeline = self.pipeline_class(**self.get_dummy_components())
|
|
inputs = self.get_dummy_inputs("cpu")
|
|
|
|
expected_image_size = (16, 16, 3)
|
|
for scheduler_cls in [DDIMScheduler, DEISMultistepScheduler, DPMSolverMultistepScheduler]:
|
|
pipeline.scheduler = scheduler_cls.from_config(pipeline.scheduler.config)
|
|
image = pipeline(**inputs).images[0]
|
|
|
|
shape = image.shape
|
|
assert shape == expected_image_size
|
|
|
|
pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config)
|
|
|
|
with self.assertRaises(ValueError):
|
|
# Karras schedulers are not supported
|
|
image = pipeline(**inputs).images[0]
|
|
|
|
def test_encode_prompt_works_in_isolation(self):
|
|
extra_required_param_value_dict = {
|
|
"device": torch.device(torch_device).type,
|
|
"do_classifier_free_guidance": self.get_dummy_inputs(device=torch_device).get("guidance_scale", 1.0) > 1.0,
|
|
}
|
|
return super().test_encode_prompt_works_in_isolation(extra_required_param_value_dict)
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
class StableDiffusionPipelineIntegrationTests(unittest.TestCase):
|
|
def setUp(self):
|
|
# clean up the VRAM before each test
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def test_stable_diffusion_1(self):
|
|
sag_pipe = StableDiffusionSAGPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
|
|
sag_pipe = sag_pipe.to(torch_device)
|
|
sag_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "."
|
|
generator = torch.manual_seed(0)
|
|
output = sag_pipe(
|
|
[prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np"
|
|
)
|
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
|
|
|
|
def test_stable_diffusion_2(self):
|
|
sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
|
|
sag_pipe = sag_pipe.to(torch_device)
|
|
sag_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "."
|
|
generator = torch.manual_seed(0)
|
|
output = sag_pipe(
|
|
[prompt], generator=generator, guidance_scale=7.5, sag_scale=1.0, num_inference_steps=20, output_type="np"
|
|
)
|
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2
|
|
|
|
def test_stable_diffusion_2_non_square(self):
|
|
sag_pipe = StableDiffusionSAGPipeline.from_pretrained("stabilityai/stable-diffusion-2-1-base")
|
|
sag_pipe = sag_pipe.to(torch_device)
|
|
sag_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "."
|
|
generator = torch.manual_seed(0)
|
|
output = sag_pipe(
|
|
[prompt],
|
|
width=768,
|
|
height=512,
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
sag_scale=1.0,
|
|
num_inference_steps=20,
|
|
output_type="np",
|
|
)
|
|
|
|
image = output.images
|
|
|
|
assert image.shape == (1, 512, 768, 3)
|