mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
* enable several pipeline integration tests on xpu Signed-off-by: Yao Matrix <matrix.yao@intel.com> * fix style Signed-off-by: Yao Matrix <matrix.yao@intel.com> * update per comments Signed-off-by: Matrix Yao <matrix.yao@intel.com> --------- Signed-off-by: Yao Matrix <matrix.yao@intel.com> Signed-off-by: Matrix Yao <matrix.yao@intel.com>
327 lines
12 KiB
Python
327 lines
12 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
PNDMScheduler,
|
|
StableDiffusionLDM3DPipeline,
|
|
UNet2DConditionModel,
|
|
)
|
|
from diffusers.utils.testing_utils import (
|
|
backend_empty_cache,
|
|
enable_full_determinism,
|
|
nightly,
|
|
require_torch_accelerator,
|
|
torch_device,
|
|
)
|
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class StableDiffusionLDM3DPipelineFastTests(unittest.TestCase):
|
|
pipeline_class = StableDiffusionLDM3DPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
image_params = TEXT_TO_IMAGE_IMAGE_PARAMS
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=6,
|
|
out_channels=6,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
"image_encoder": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_stable_diffusion_ddim(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components)
|
|
ldm3d_pipe = ldm3d_pipe.to(torch_device)
|
|
ldm3d_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = ldm3d_pipe(**inputs)
|
|
rgb, depth = output.rgb, output.depth
|
|
|
|
image_slice_rgb = rgb[0, -3:, -3:, -1]
|
|
image_slice_depth = depth[0, -3:, -1]
|
|
|
|
assert rgb.shape == (1, 64, 64, 3)
|
|
assert depth.shape == (1, 64, 64)
|
|
|
|
expected_slice_rgb = np.array(
|
|
[0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262]
|
|
)
|
|
expected_slice_depth = np.array([103.46727, 85.812004, 87.849236])
|
|
|
|
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1e-2
|
|
assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1e-2
|
|
|
|
def test_stable_diffusion_prompt_embeds(self):
|
|
components = self.get_dummy_components()
|
|
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components)
|
|
ldm3d_pipe = ldm3d_pipe.to(torch_device)
|
|
ldm3d_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
inputs["prompt"] = 3 * [inputs["prompt"]]
|
|
|
|
# forward
|
|
output = ldm3d_pipe(**inputs)
|
|
rgb_slice_1, depth_slice_1 = output.rgb, output.depth
|
|
rgb_slice_1 = rgb_slice_1[0, -3:, -3:, -1]
|
|
depth_slice_1 = depth_slice_1[0, -3:, -1]
|
|
|
|
inputs = self.get_dummy_inputs(torch_device)
|
|
prompt = 3 * [inputs.pop("prompt")]
|
|
|
|
text_inputs = ldm3d_pipe.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=ldm3d_pipe.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_inputs = text_inputs["input_ids"].to(torch_device)
|
|
|
|
prompt_embeds = ldm3d_pipe.text_encoder(text_inputs)[0]
|
|
|
|
inputs["prompt_embeds"] = prompt_embeds
|
|
|
|
# forward
|
|
output = ldm3d_pipe(**inputs)
|
|
rgb_slice_2, depth_slice_2 = output.rgb, output.depth
|
|
rgb_slice_2 = rgb_slice_2[0, -3:, -3:, -1]
|
|
depth_slice_2 = depth_slice_2[0, -3:, -1]
|
|
|
|
assert np.abs(rgb_slice_1.flatten() - rgb_slice_2.flatten()).max() < 1e-4
|
|
assert np.abs(depth_slice_1.flatten() - depth_slice_2.flatten()).max() < 1e-4
|
|
|
|
def test_stable_diffusion_negative_prompt(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
|
|
ldm3d_pipe = StableDiffusionLDM3DPipeline(**components)
|
|
ldm3d_pipe = ldm3d_pipe.to(device)
|
|
ldm3d_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
negative_prompt = "french fries"
|
|
output = ldm3d_pipe(**inputs, negative_prompt=negative_prompt)
|
|
|
|
rgb, depth = output.rgb, output.depth
|
|
rgb_slice = rgb[0, -3:, -3:, -1]
|
|
depth_slice = depth[0, -3:, -1]
|
|
|
|
assert rgb.shape == (1, 64, 64, 3)
|
|
assert depth.shape == (1, 64, 64)
|
|
|
|
expected_slice_rgb = np.array(
|
|
[0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217]
|
|
)
|
|
expected_slice_depth = np.array([107.84738, 84.62802, 89.962135])
|
|
assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1e-2
|
|
assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1e-2
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
class StableDiffusionLDM3DPipelineSlowTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
|
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
|
inputs = {
|
|
"prompt": "a photograph of an astronaut riding a horse",
|
|
"latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 3,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_ldm3d_stable_diffusion(self):
|
|
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d")
|
|
ldm3d_pipe = ldm3d_pipe.to(torch_device)
|
|
ldm3d_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
output = ldm3d_pipe(**inputs)
|
|
rgb, depth = output.rgb, output.depth
|
|
rgb_slice = rgb[0, -3:, -3:, -1].flatten()
|
|
depth_slice = rgb[0, -3:, -1].flatten()
|
|
|
|
assert rgb.shape == (1, 512, 512, 3)
|
|
assert depth.shape == (1, 512, 512)
|
|
|
|
expected_slice_rgb = np.array(
|
|
[0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706]
|
|
)
|
|
expected_slice_depth = np.array(
|
|
[0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706]
|
|
)
|
|
assert np.abs(rgb_slice - expected_slice_rgb).max() < 3e-3
|
|
assert np.abs(depth_slice - expected_slice_depth).max() < 3e-3
|
|
|
|
|
|
@nightly
|
|
@require_torch_accelerator
|
|
class StableDiffusionPipelineNightlyTests(unittest.TestCase):
|
|
def setUp(self):
|
|
super().setUp()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def tearDown(self):
|
|
super().tearDown()
|
|
gc.collect()
|
|
backend_empty_cache(torch_device)
|
|
|
|
def get_inputs(self, device, generator_device="cpu", dtype=torch.float32, seed=0):
|
|
generator = torch.Generator(device=generator_device).manual_seed(seed)
|
|
latents = np.random.RandomState(seed).standard_normal((1, 4, 64, 64))
|
|
latents = torch.from_numpy(latents).to(device=device, dtype=dtype)
|
|
inputs = {
|
|
"prompt": "a photograph of an astronaut riding a horse",
|
|
"latents": latents,
|
|
"generator": generator,
|
|
"num_inference_steps": 50,
|
|
"guidance_scale": 7.5,
|
|
"output_type": "np",
|
|
}
|
|
return inputs
|
|
|
|
def test_ldm3d(self):
|
|
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d").to(torch_device)
|
|
ldm3d_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
output = ldm3d_pipe(**inputs)
|
|
rgb, depth = output.rgb, output.depth
|
|
|
|
expected_rgb_mean = 0.495586
|
|
expected_rgb_std = 0.33795515
|
|
expected_depth_mean = 112.48518
|
|
expected_depth_std = 98.489746
|
|
assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3
|
|
assert np.abs(expected_rgb_std - rgb.std()) < 1e-3
|
|
assert np.abs(expected_depth_mean - depth.mean()) < 1e-3
|
|
assert np.abs(expected_depth_std - depth.std()) < 1e-3
|
|
|
|
def test_ldm3d_v2(self):
|
|
ldm3d_pipe = StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-4c").to(torch_device)
|
|
ldm3d_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_inputs(torch_device)
|
|
output = ldm3d_pipe(**inputs)
|
|
rgb, depth = output.rgb, output.depth
|
|
|
|
expected_rgb_mean = 0.4194127
|
|
expected_rgb_std = 0.35375586
|
|
expected_depth_mean = 0.5638502
|
|
expected_depth_std = 0.34686103
|
|
|
|
assert rgb.shape == (1, 512, 512, 3)
|
|
assert depth.shape == (1, 512, 512, 1)
|
|
assert np.abs(expected_rgb_mean - rgb.mean()) < 1e-3
|
|
assert np.abs(expected_rgb_std - rgb.std()) < 1e-3
|
|
assert np.abs(expected_depth_mean - depth.mean()) < 1e-3
|
|
assert np.abs(expected_depth_std - depth.std()) < 1e-3
|