mirror of
https://github.com/huggingface/diffusers.git
synced 2026-01-29 07:22:12 +03:00
172 lines
6.5 KiB
Python
172 lines
6.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2024 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
|
|
|
|
from diffusers import AmusedPipeline, AmusedScheduler, UVit2DModel, VQModel
|
|
from diffusers.utils.testing_utils import (
|
|
enable_full_determinism,
|
|
require_torch_accelerator,
|
|
slow,
|
|
torch_device,
|
|
)
|
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
|
|
from ..test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
enable_full_determinism()
|
|
|
|
|
|
class AmusedPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = AmusedPipeline
|
|
params = TEXT_TO_IMAGE_PARAMS | {"encoder_hidden_states", "negative_encoder_hidden_states"}
|
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS
|
|
test_layerwise_casting = True
|
|
test_group_offloading = True
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
transformer = UVit2DModel(
|
|
hidden_size=8,
|
|
use_bias=False,
|
|
hidden_dropout=0.0,
|
|
cond_embed_dim=8,
|
|
micro_cond_encode_dim=2,
|
|
micro_cond_embed_dim=10,
|
|
encoder_hidden_size=8,
|
|
vocab_size=32,
|
|
codebook_size=8,
|
|
in_channels=8,
|
|
block_out_channels=8,
|
|
num_res_blocks=1,
|
|
downsample=True,
|
|
upsample=True,
|
|
block_num_heads=1,
|
|
num_hidden_layers=1,
|
|
num_attention_heads=1,
|
|
attention_dropout=0.0,
|
|
intermediate_size=8,
|
|
layer_norm_eps=1e-06,
|
|
ln_elementwise_affine=True,
|
|
)
|
|
scheduler = AmusedScheduler(mask_token_id=31)
|
|
torch.manual_seed(0)
|
|
vqvae = VQModel(
|
|
act_fn="silu",
|
|
block_out_channels=[8],
|
|
down_block_types=["DownEncoderBlock2D"],
|
|
in_channels=3,
|
|
latent_channels=8,
|
|
layers_per_block=1,
|
|
norm_num_groups=8,
|
|
num_vq_embeddings=8,
|
|
out_channels=3,
|
|
sample_size=8,
|
|
up_block_types=["UpDecoderBlock2D"],
|
|
mid_block_add_attention=False,
|
|
lookup_from_codebook=True,
|
|
)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=8,
|
|
intermediate_size=8,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=1,
|
|
num_hidden_layers=1,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
projection_dim=8,
|
|
)
|
|
text_encoder = CLIPTextModelWithProjection(text_encoder_config)
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
components = {
|
|
"transformer": transformer,
|
|
"scheduler": scheduler,
|
|
"vqvae": vqvae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"output_type": "np",
|
|
"height": 4,
|
|
"width": 4,
|
|
}
|
|
return inputs
|
|
|
|
def test_inference_batch_consistent(self, batch_sizes=[2]):
|
|
self._test_inference_batch_consistent(batch_sizes=batch_sizes, batch_generator=False)
|
|
|
|
@unittest.skip("aMUSEd does not support lists of generators")
|
|
def test_inference_batch_single_identical(self): ...
|
|
|
|
|
|
@slow
|
|
@require_torch_accelerator
|
|
class AmusedPipelineSlowTests(unittest.TestCase):
|
|
def test_amused_256(self):
|
|
pipe = AmusedPipeline.from_pretrained("amused/amused-256")
|
|
pipe.to(torch_device)
|
|
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.4011, 0.3992, 0.379, 0.3856, 0.3772, 0.3711, 0.3919, 0.385, 0.3625])
|
|
assert np.abs(image_slice - expected_slice).max() < 0.003
|
|
|
|
def test_amused_256_fp16(self):
|
|
pipe = AmusedPipeline.from_pretrained("amused/amused-256", variant="fp16", torch_dtype=torch.float16)
|
|
pipe.to(torch_device)
|
|
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.0554, 0.05129, 0.0344, 0.0452, 0.0476, 0.0271, 0.0495, 0.0527, 0.0158])
|
|
assert np.abs(image_slice - expected_slice).max() < 0.007
|
|
|
|
def test_amused_512(self):
|
|
pipe = AmusedPipeline.from_pretrained("amused/amused-512")
|
|
pipe.to(torch_device)
|
|
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.1199, 0.1171, 0.1229, 0.1188, 0.1210, 0.1147, 0.1260, 0.1346, 0.1152])
|
|
assert np.abs(image_slice - expected_slice).max() < 0.003
|
|
|
|
def test_amused_512_fp16(self):
|
|
pipe = AmusedPipeline.from_pretrained("amused/amused-512", variant="fp16", torch_dtype=torch.float16)
|
|
pipe.to(torch_device)
|
|
image = pipe("dog", generator=torch.Generator().manual_seed(0), num_inference_steps=2, output_type="np").images
|
|
image_slice = image[0, -3:, -3:, -1].flatten()
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.1509, 0.1492, 0.1531, 0.1485, 0.1501, 0.1465, 0.1581, 0.1690, 0.1499])
|
|
assert np.abs(image_slice - expected_slice).max() < 0.003
|