1
0
mirror of https://github.com/huggingface/diffusers.git synced 2026-01-29 07:22:12 +03:00
Files
diffusers/tests/models/transformers/test_models_transformer_chroma.py
Edna 8adc6003ba Chroma Pipeline (#11698)
* working state from hameerabbasi and iddl

* working state form hameerabbasi and iddl (transformer)

* working state (normalization)

* working state (embeddings)

* add chroma loader

* add chroma to mappings

* add chroma to transformer init

* take out variant stuff

* get decently far in changing variant stuff

* add chroma init

* make chroma output class

* add chroma transformer to dummy tp

* add chroma to init

* add chroma to init

* fix single file

* update

* update

* add chroma to auto pipeline

* add chroma to pipeline init

* change to chroma transformer

* take out variant from blocks

* swap embedder location

* remove prompt_2

* work on swapping text encoders

* remove mask function

* dont modify mask (for now)

* wrap attn mask

* no attn mask (can't get it to work)

* remove pooled prompt embeds

* change to my own unpooled embeddeer

* fix load

* take pooled projections out of transformer

* ensure correct dtype for chroma embeddings

* update

* use dn6 attn mask + fix true_cfg_scale

* use chroma pipeline output

* use DN6 embeddings

* remove guidance

* remove guidance embed (pipeline)

* remove guidance from embeddings

* don't return length

* dont change dtype

* remove unused stuff, fix up docs

* add chroma autodoc

* add .md (oops)

* initial chroma docs

* undo don't change dtype

* undo arxiv change

unsure why that happened

* fix hf papers regression in more places

* Update docs/source/en/api/pipelines/chroma.md

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* do_cfg -> self.do_classifier_free_guidance

* Update docs/source/en/api/models/chroma_transformer.md

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Update chroma.md

* Move chroma layers into transformer

* Remove pruned AdaLayerNorms

* Add chroma fast tests

* (untested) batch cond and uncond

* Add # Copied from for shift

* Update # Copied from statements

* update norm imports

* Revert cond + uncond batching

* Add transformer tests

* move chroma test (oops)

* chroma init

* fix chroma pipeline fast tests

* Update src/diffusers/models/transformers/transformer_chroma.py

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>

* Move Approximator and Embeddings

* Fix auto pipeline + make style, quality

* make style

* Apply style fixes

* switch to new input ids

* fix # Copied from error

* remove # Copied from on protected members

* try to fix import

* fix import

* make fix-copes

* revert style fix

* update chroma transformer params

* update chroma transformer approximator init params

* update to pad tokens

* fix batch inference

* Make more pipeline tests work

* Make most transformer tests work

* fix docs

* make style, make quality

* skip batch tests

* fix test skipping

* fix test skipping again

* fix for tests

* Fix all pipeline test

* update

* push local changes, fix docs

* add encoder test, remove pooled dim

* default proj dim

* fix tests

* fix equal size list input

* update

* push local changes, fix docs

* add encoder test, remove pooled dim

* default proj dim

* fix tests

* fix equal size list input

* Revert "fix equal size list input"

This reverts commit 3fe4ad67d5.

* update

* update

* update

* update

* update

---------

Co-authored-by: Dhruv Nair <dhruv.nair@gmail.com>
Co-authored-by: github-actions[bot] <github-actions[bot]@users.noreply.github.com>
2025-06-14 06:52:56 +05:30

184 lines
6.5 KiB
Python

# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from diffusers import ChromaTransformer2DModel
from diffusers.models.attention_processor import FluxIPAdapterJointAttnProcessor2_0
from diffusers.models.embeddings import ImageProjection
from diffusers.utils.testing_utils import enable_full_determinism, torch_device
from ..test_modeling_common import LoraHotSwappingForModelTesterMixin, ModelTesterMixin, TorchCompileTesterMixin
enable_full_determinism()
def create_chroma_ip_adapter_state_dict(model):
# "ip_adapter" (cross-attention weights)
ip_cross_attn_state_dict = {}
key_id = 0
for name in model.attn_processors.keys():
if name.startswith("single_transformer_blocks"):
continue
joint_attention_dim = model.config["joint_attention_dim"]
hidden_size = model.config["num_attention_heads"] * model.config["attention_head_dim"]
sd = FluxIPAdapterJointAttnProcessor2_0(
hidden_size=hidden_size, cross_attention_dim=joint_attention_dim, scale=1.0
).state_dict()
ip_cross_attn_state_dict.update(
{
f"{key_id}.to_k_ip.weight": sd["to_k_ip.0.weight"],
f"{key_id}.to_v_ip.weight": sd["to_v_ip.0.weight"],
f"{key_id}.to_k_ip.bias": sd["to_k_ip.0.bias"],
f"{key_id}.to_v_ip.bias": sd["to_v_ip.0.bias"],
}
)
key_id += 1
# "image_proj" (ImageProjection layer weights)
image_projection = ImageProjection(
cross_attention_dim=model.config["joint_attention_dim"],
image_embed_dim=model.config["pooled_projection_dim"],
num_image_text_embeds=4,
)
ip_image_projection_state_dict = {}
sd = image_projection.state_dict()
ip_image_projection_state_dict.update(
{
"proj.weight": sd["image_embeds.weight"],
"proj.bias": sd["image_embeds.bias"],
"norm.weight": sd["norm.weight"],
"norm.bias": sd["norm.bias"],
}
)
del sd
ip_state_dict = {}
ip_state_dict.update({"image_proj": ip_image_projection_state_dict, "ip_adapter": ip_cross_attn_state_dict})
return ip_state_dict
class ChromaTransformerTests(ModelTesterMixin, unittest.TestCase):
model_class = ChromaTransformer2DModel
main_input_name = "hidden_states"
# We override the items here because the transformer under consideration is small.
model_split_percents = [0.8, 0.7, 0.7]
# Skip setting testing with default: AttnProcessor
uses_custom_attn_processor = True
@property
def dummy_input(self):
batch_size = 1
num_latent_channels = 4
num_image_channels = 3
height = width = 4
sequence_length = 48
embedding_dim = 32
hidden_states = torch.randn((batch_size, height * width, num_latent_channels)).to(torch_device)
encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device)
text_ids = torch.randn((sequence_length, num_image_channels)).to(torch_device)
image_ids = torch.randn((height * width, num_image_channels)).to(torch_device)
timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size)
return {
"hidden_states": hidden_states,
"encoder_hidden_states": encoder_hidden_states,
"img_ids": image_ids,
"txt_ids": text_ids,
"timestep": timestep,
}
@property
def input_shape(self):
return (16, 4)
@property
def output_shape(self):
return (16, 4)
def prepare_init_args_and_inputs_for_common(self):
init_dict = {
"patch_size": 1,
"in_channels": 4,
"num_layers": 1,
"num_single_layers": 1,
"attention_head_dim": 16,
"num_attention_heads": 2,
"joint_attention_dim": 32,
"axes_dims_rope": [4, 4, 8],
"approximator_num_channels": 8,
"approximator_hidden_dim": 16,
"approximator_layers": 1,
}
inputs_dict = self.dummy_input
return init_dict, inputs_dict
def test_deprecated_inputs_img_txt_ids_3d(self):
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
model = self.model_class(**init_dict)
model.to(torch_device)
model.eval()
with torch.no_grad():
output_1 = model(**inputs_dict).to_tuple()[0]
# update inputs_dict with txt_ids and img_ids as 3d tensors (deprecated)
text_ids_3d = inputs_dict["txt_ids"].unsqueeze(0)
image_ids_3d = inputs_dict["img_ids"].unsqueeze(0)
assert text_ids_3d.ndim == 3, "text_ids_3d should be a 3d tensor"
assert image_ids_3d.ndim == 3, "img_ids_3d should be a 3d tensor"
inputs_dict["txt_ids"] = text_ids_3d
inputs_dict["img_ids"] = image_ids_3d
with torch.no_grad():
output_2 = model(**inputs_dict).to_tuple()[0]
self.assertEqual(output_1.shape, output_2.shape)
self.assertTrue(
torch.allclose(output_1, output_2, atol=1e-5),
msg="output with deprecated inputs (img_ids and txt_ids as 3d torch tensors) are not equal as them as 2d inputs",
)
def test_gradient_checkpointing_is_applied(self):
expected_set = {"ChromaTransformer2DModel"}
super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
class ChromaTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase):
model_class = ChromaTransformer2DModel
def prepare_init_args_and_inputs_for_common(self):
return ChromaTransformerTests().prepare_init_args_and_inputs_for_common()
class ChromaTransformerLoRAHotSwapTests(LoraHotSwappingForModelTesterMixin, unittest.TestCase):
model_class = ChromaTransformer2DModel
def prepare_init_args_and_inputs_for_common(self):
return ChromaTransformerTests().prepare_init_args_and_inputs_for_common()