from abc import abstractmethod import numpy as np import torch import torch.nn as nn import torch.nn.functional as F def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def conv_transpose_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.ConvTranspose1d(*args, **kwargs) elif dims == 2: return nn.ConvTranspose2d(*args, **kwargs) elif dims == 3: return nn.ConvTranspose3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def Normalize(in_channels, num_groups=32, eps=1e-6): return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=eps, affine=True) def nonlinearity(x, swish=1.0): # swish if swish == 1.0: return F.silu(x) else: return x * F.sigmoid(x * float(swish)) class TimestepBlock(nn.Module): """ Any module where forward() takes timestep embeddings as a second argument. """ @abstractmethod def forward(self, x, emb): """ Apply the module to `x` given `emb` timestep embeddings. """ class Upsample(nn.Module): """ An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv=False, use_conv_transpose=False, dims=2, out_channels=None): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims self.use_conv_transpose = use_conv_transpose if use_conv_transpose: self.conv = conv_transpose_nd(dims, channels, self.out_channels, 4, 2, 1) elif use_conv: self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) def forward(self, x): assert x.shape[1] == self.channels if self.use_conv_transpose: return self.conv(x) if self.dims == 3: x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") else: x = F.interpolate(x, scale_factor=2.0, mode="nearest") if self.use_conv: x = self.conv(x) return x class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv=False, dims=2, out_channels=None, padding=1, name="conv"): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims self.padding = padding stride = 2 if dims != 3 else (1, 2, 2) self.name = name if use_conv: conv = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=padding) else: assert self.channels == self.out_channels conv = avg_pool_nd(dims, kernel_size=stride, stride=stride) if name == "conv": self.conv = conv else: self.op = conv def forward(self, x): assert x.shape[1] == self.channels if self.use_conv and self.padding == 0 and self.dims == 2: pad = (0, 1, 0, 1) x = F.pad(x, pad, mode="constant", value=0) if self.name == "conv": return self.conv(x) else: return self.op(x) # TODO (patil-suraj): needs test # class Upsample1d(nn.Module): # def __init__(self, dim): # super().__init__() # self.conv = nn.ConvTranspose1d(dim, dim, 4, 2, 1) # # def forward(self, x): # return self.conv(x) # RESNETS # unet_score_estimation.py class ResnetBlockBigGANppNew(nn.Module): def __init__( self, act, in_ch, out_ch=None, temb_dim=None, up=False, down=False, dropout=0.1, fir_kernel=(1, 3, 3, 1), skip_rescale=True, init_scale=0.0, overwrite=True, ): super().__init__() out_ch = out_ch if out_ch else in_ch self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) self.up = up self.down = down self.fir_kernel = fir_kernel self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1) if temb_dim is not None: self.Dense_0 = nn.Linear(temb_dim, out_ch) self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape) nn.init.zeros_(self.Dense_0.bias) self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) self.Dropout_0 = nn.Dropout(dropout) self.Conv_1 = conv2d(out_ch, out_ch, init_scale=init_scale, kernel_size=3, padding=1) if in_ch != out_ch or up or down: # 1x1 convolution with DDPM initialization. self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0) self.skip_rescale = skip_rescale self.act = act self.in_ch = in_ch self.out_ch = out_ch if self.overwrite: in_channels = in_ch out_channels = out_ch groups = min(in_ch // 4, 32) eps = 1e-6 self.pre_norm = True temb_channels = temb_dim non_linearity = "silu" time_embedding_norm = "default" if self.pre_norm: self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) else: self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if time_embedding_norm == "default": self.temb_proj = torch.nn.Linear(temb_channels, out_channels) elif time_embedding_norm == "scale_shift": self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels) self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = nonlinearity elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() if up: self.h_upd = Upsample(in_channels, use_conv=False, dims=2) self.x_upd = Upsample(in_channels, use_conv=False, dims=2) elif down: self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op") self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op") if self.in_channels != self.out_channels: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb=None): h = self.act(self.GroupNorm_0(x)) if self.up: h = upsample_2d(h, self.fir_kernel, factor=2) x = upsample_2d(x, self.fir_kernel, factor=2) elif self.down: h = downsample_2d(h, self.fir_kernel, factor=2) x = downsample_2d(x, self.fir_kernel, factor=2) h = self.Conv_0(h) # Add bias to each feature map conditioned on the time embedding if temb is not None: h += self.Dense_0(self.act(temb))[:, :, None, None] h = self.act(self.GroupNorm_1(h)) h = self.Dropout_0(h) h = self.Conv_1(h) if self.in_ch != self.out_ch or self.up or self.down: x = self.Conv_2(x) if not self.skip_rescale: return x + h else: return (x + h) / np.sqrt(2.0) def forward_2(self, x, temb, mask=1.0): # TODO(Patrick) eventually this class should be split into multiple classes # too many if else statements if self.overwrite_for_grad_tts and not self.is_overwritten: self.set_weights_grad_tts() self.is_overwritten = True elif self.overwrite_for_ldm and not self.is_overwritten: self.set_weights_ldm() self.is_overwritten = True h = x h = h * mask if self.pre_norm: h = self.norm1(h) h = self.nonlinearity(h) if self.up or self.down: x = self.x_upd(x) h = self.h_upd(h) h = self.conv1(h) if not self.pre_norm: h = self.norm1(h) h = self.nonlinearity(h) h = h * mask temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None] if self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) h = self.norm2(h) h = h + h * scale + shift h = self.nonlinearity(h) elif self.time_embedding_norm == "default": h = h + temb h = h * mask if self.pre_norm: h = self.norm2(h) h = self.nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if not self.pre_norm: h = self.norm2(h) h = self.nonlinearity(h) h = h * mask x = x * mask if self.in_channels != self.out_channels: x = self.nin_shortcut(x) return x + h # unet.py, unet_grad_tts.py, unet_ldm.py, unet_glide.py class ResnetBlock(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512, groups=32, pre_norm=True, eps=1e-6, non_linearity="swish", time_embedding_norm="default", up=False, down=False, overwrite_for_grad_tts=False, overwrite_for_ldm=False, overwrite_for_glide=False, ): super().__init__() self.pre_norm = pre_norm self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.time_embedding_norm = time_embedding_norm self.up = up self.down = down if self.pre_norm: self.norm1 = Normalize(in_channels, num_groups=groups, eps=eps) else: self.norm1 = Normalize(out_channels, num_groups=groups, eps=eps) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if time_embedding_norm == "default": self.temb_proj = torch.nn.Linear(temb_channels, out_channels) elif time_embedding_norm == "scale_shift": self.temb_proj = torch.nn.Linear(temb_channels, 2 * out_channels) self.norm2 = Normalize(out_channels, num_groups=groups, eps=eps) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if non_linearity == "swish": self.nonlinearity = nonlinearity elif non_linearity == "mish": self.nonlinearity = Mish() elif non_linearity == "silu": self.nonlinearity = nn.SiLU() if up: self.h_upd = Upsample(in_channels, use_conv=False, dims=2) self.x_upd = Upsample(in_channels, use_conv=False, dims=2) elif down: self.h_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op") self.x_upd = Downsample(in_channels, use_conv=False, dims=2, padding=1, name="op") if self.in_channels != self.out_channels: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) # TODO(SURAJ, PATRICK): ALL OF THE FOLLOWING OF THE INIT METHOD CAN BE DELETED ONCE WEIGHTS ARE CONVERTED self.is_overwritten = False self.overwrite_for_glide = overwrite_for_glide self.overwrite_for_grad_tts = overwrite_for_grad_tts self.overwrite_for_ldm = overwrite_for_ldm or overwrite_for_glide if self.overwrite_for_grad_tts: dim = in_channels dim_out = out_channels time_emb_dim = temb_channels self.mlp = torch.nn.Sequential(Mish(), torch.nn.Linear(time_emb_dim, dim_out)) self.pre_norm = pre_norm self.block1 = Block(dim, dim_out, groups=groups) self.block2 = Block(dim_out, dim_out, groups=groups) if dim != dim_out: self.res_conv = torch.nn.Conv2d(dim, dim_out, 1) else: self.res_conv = torch.nn.Identity() elif self.overwrite_for_ldm: dims = 2 channels = in_channels emb_channels = temb_channels use_scale_shift_norm = False self.in_layers = nn.Sequential( normalization(channels, swish=1.0), nn.Identity(), conv_nd(dims, channels, self.out_channels, 3, padding=1), ) self.emb_layers = nn.Sequential( nn.SiLU(), linear( emb_channels, 2 * self.out_channels if self.time_embedding_norm == "scale_shift" else self.out_channels, ), ) self.out_layers = nn.Sequential( normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0), nn.SiLU() if use_scale_shift_norm else nn.Identity(), nn.Dropout(p=dropout), zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)), ) if self.out_channels == in_channels: self.skip_connection = nn.Identity() else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def set_weights_grad_tts(self): self.conv1.weight.data = self.block1.block[0].weight.data self.conv1.bias.data = self.block1.block[0].bias.data self.norm1.weight.data = self.block1.block[1].weight.data self.norm1.bias.data = self.block1.block[1].bias.data self.conv2.weight.data = self.block2.block[0].weight.data self.conv2.bias.data = self.block2.block[0].bias.data self.norm2.weight.data = self.block2.block[1].weight.data self.norm2.bias.data = self.block2.block[1].bias.data self.temb_proj.weight.data = self.mlp[1].weight.data self.temb_proj.bias.data = self.mlp[1].bias.data if self.in_channels != self.out_channels: self.nin_shortcut.weight.data = self.res_conv.weight.data self.nin_shortcut.bias.data = self.res_conv.bias.data def set_weights_ldm(self): self.norm1.weight.data = self.in_layers[0].weight.data self.norm1.bias.data = self.in_layers[0].bias.data self.conv1.weight.data = self.in_layers[-1].weight.data self.conv1.bias.data = self.in_layers[-1].bias.data self.temb_proj.weight.data = self.emb_layers[-1].weight.data self.temb_proj.bias.data = self.emb_layers[-1].bias.data self.norm2.weight.data = self.out_layers[0].weight.data self.norm2.bias.data = self.out_layers[0].bias.data self.conv2.weight.data = self.out_layers[-1].weight.data self.conv2.bias.data = self.out_layers[-1].bias.data if self.in_channels != self.out_channels: self.nin_shortcut.weight.data = self.skip_connection.weight.data self.nin_shortcut.bias.data = self.skip_connection.bias.data def forward(self, x, temb, mask=1.0): # TODO(Patrick) eventually this class should be split into multiple classes # too many if else statements if self.overwrite_for_grad_tts and not self.is_overwritten: self.set_weights_grad_tts() self.is_overwritten = True elif self.overwrite_for_ldm and not self.is_overwritten: self.set_weights_ldm() self.is_overwritten = True h = x h = h * mask if self.pre_norm: h = self.norm1(h) h = self.nonlinearity(h) if self.up or self.down: x = self.x_upd(x) h = self.h_upd(h) h = self.conv1(h) if not self.pre_norm: h = self.norm1(h) h = self.nonlinearity(h) h = h * mask temb = self.temb_proj(self.nonlinearity(temb))[:, :, None, None] if self.time_embedding_norm == "scale_shift": scale, shift = torch.chunk(temb, 2, dim=1) h = self.norm2(h) h = h + h * scale + shift h = self.nonlinearity(h) elif self.time_embedding_norm == "default": h = h + temb h = h * mask if self.pre_norm: h = self.norm2(h) h = self.nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if not self.pre_norm: h = self.norm2(h) h = self.nonlinearity(h) h = h * mask x = x * mask if self.in_channels != self.out_channels: x = self.nin_shortcut(x) return x + h # TODO(Patrick) - just there to convert the weights; can delete afterward class Block(torch.nn.Module): def __init__(self, dim, dim_out, groups=8): super(Block, self).__init__() self.block = torch.nn.Sequential( torch.nn.Conv2d(dim, dim_out, 3, padding=1), torch.nn.GroupNorm(groups, dim_out), Mish() ) # unet_score_estimation.py class ResnetBlockBigGANpp(nn.Module): def __init__( self, act, in_ch, out_ch=None, temb_dim=None, up=False, down=False, dropout=0.1, fir_kernel=(1, 3, 3, 1), skip_rescale=True, init_scale=0.0, ): super().__init__() out_ch = out_ch if out_ch else in_ch self.GroupNorm_0 = nn.GroupNorm(num_groups=min(in_ch // 4, 32), num_channels=in_ch, eps=1e-6) self.up = up self.down = down self.fir_kernel = fir_kernel self.Conv_0 = conv2d(in_ch, out_ch, kernel_size=3, padding=1) if temb_dim is not None: self.Dense_0 = nn.Linear(temb_dim, out_ch) self.Dense_0.weight.data = variance_scaling()(self.Dense_0.weight.shape) nn.init.zeros_(self.Dense_0.bias) self.GroupNorm_1 = nn.GroupNorm(num_groups=min(out_ch // 4, 32), num_channels=out_ch, eps=1e-6) self.Dropout_0 = nn.Dropout(dropout) self.Conv_1 = conv2d(out_ch, out_ch, init_scale=init_scale, kernel_size=3, padding=1) if in_ch != out_ch or up or down: # 1x1 convolution with DDPM initialization. self.Conv_2 = conv2d(in_ch, out_ch, kernel_size=1, padding=0) self.skip_rescale = skip_rescale self.act = act self.in_ch = in_ch self.out_ch = out_ch def forward(self, x, temb=None): h = self.act(self.GroupNorm_0(x)) if self.up: h = upsample_2d(h, self.fir_kernel, factor=2) x = upsample_2d(x, self.fir_kernel, factor=2) elif self.down: h = downsample_2d(h, self.fir_kernel, factor=2) x = downsample_2d(x, self.fir_kernel, factor=2) h = self.Conv_0(h) # Add bias to each feature map conditioned on the time embedding if temb is not None: h += self.Dense_0(self.act(temb))[:, :, None, None] h = self.act(self.GroupNorm_1(h)) h = self.Dropout_0(h) h = self.Conv_1(h) if self.in_ch != self.out_ch or self.up or self.down: x = self.Conv_2(x) if not self.skip_rescale: return x + h else: return (x + h) / np.sqrt(2.0) # unet_rl.py class ResidualTemporalBlock(nn.Module): def __init__(self, inp_channels, out_channels, embed_dim, horizon, kernel_size=5): super().__init__() self.blocks = nn.ModuleList( [ Conv1dBlock(inp_channels, out_channels, kernel_size), Conv1dBlock(out_channels, out_channels, kernel_size), ] ) self.time_mlp = nn.Sequential( nn.Mish(), nn.Linear(embed_dim, out_channels), RearrangeDim(), # Rearrange("batch t -> batch t 1"), ) self.residual_conv = ( nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity() ) def forward(self, x, t): """ x : [ batch_size x inp_channels x horizon ] t : [ batch_size x embed_dim ] returns: out : [ batch_size x out_channels x horizon ] """ out = self.blocks[0](x) + self.time_mlp(t) out = self.blocks[1](out) return out + self.residual_conv(x) # HELPER Modules def normalization(channels, swish=0.0): """ Make a standard normalization layer, with an optional swish activation. :param channels: number of input channels. :return: an nn.Module for normalization. """ return GroupNorm32(num_channels=channels, num_groups=32, swish=swish) class GroupNorm32(nn.GroupNorm): def __init__(self, num_groups, num_channels, swish, eps=1e-5): super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps) self.swish = swish def forward(self, x): y = super().forward(x.float()).to(x.dtype) if self.swish == 1.0: y = F.silu(y) elif self.swish: y = y * F.sigmoid(y * float(self.swish)) return y def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module class Mish(torch.nn.Module): def forward(self, x): return x * torch.tanh(torch.nn.functional.softplus(x)) class Conv1dBlock(nn.Module): """ Conv1d --> GroupNorm --> Mish """ def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8): super().__init__() self.block = nn.Sequential( nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2), RearrangeDim(), # Rearrange("batch channels horizon -> batch channels 1 horizon"), nn.GroupNorm(n_groups, out_channels), RearrangeDim(), # Rearrange("batch channels 1 horizon -> batch channels horizon"), nn.Mish(), ) def forward(self, x): return self.block(x) class RearrangeDim(nn.Module): def __init__(self): super().__init__() def forward(self, tensor): if len(tensor.shape) == 2: return tensor[:, :, None] if len(tensor.shape) == 3: return tensor[:, :, None, :] elif len(tensor.shape) == 4: return tensor[:, :, 0, :] else: raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.") def conv2d(in_planes, out_planes, kernel_size=3, stride=1, bias=True, init_scale=1.0, padding=1): """nXn convolution with DDPM initialization.""" conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) conv.weight.data = variance_scaling(init_scale)(conv.weight.data.shape) nn.init.zeros_(conv.bias) return conv def variance_scaling(scale=1.0, in_axis=1, out_axis=0, dtype=torch.float32, device="cpu"): """Ported from JAX.""" scale = 1e-10 if scale == 0 else scale def _compute_fans(shape, in_axis=1, out_axis=0): receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis] fan_in = shape[in_axis] * receptive_field_size fan_out = shape[out_axis] * receptive_field_size return fan_in, fan_out def init(shape, dtype=dtype, device=device): fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) denominator = (fan_in + fan_out) / 2 variance = scale / denominator return (torch.rand(*shape, dtype=dtype, device=device) * 2.0 - 1.0) * np.sqrt(3 * variance) return init def upfirdn2d(input, kernel, up=1, down=1, pad=(0, 0)): return upfirdn2d_native(input, kernel, up, up, down, down, pad[0], pad[1], pad[0], pad[1]) def upfirdn2d_native(input, kernel, up_x, up_y, down_x, down_y, pad_x0, pad_x1, pad_y0, pad_y1): _, channel, in_h, in_w = input.shape input = input.reshape(-1, in_h, in_w, 1) _, in_h, in_w, minor = input.shape kernel_h, kernel_w = kernel.shape out = input.view(-1, in_h, 1, in_w, 1, minor) out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1]) out = out.view(-1, in_h * up_y, in_w * up_x, minor) out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)]) out = out[ :, max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0), max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0), :, ] out = out.permute(0, 3, 1, 2) out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1]) w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w) out = F.conv2d(out, w) out = out.reshape( -1, minor, in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1, in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1, ) out = out.permute(0, 2, 3, 1) out = out[:, ::down_y, ::down_x, :] out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1 out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1 return out.view(-1, channel, out_h, out_w) def upsample_2d(x, k=None, factor=2, gain=1): r"""Upsample a batch of 2D images with the given filter. Args: Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a: multiple of the upsampling factor. x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling. factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: Tensor of the shape `[N, C, H * factor, W * factor]` """ assert isinstance(factor, int) and factor >= 1 if k is None: k = [1] * factor k = _setup_kernel(k) * (gain * (factor**2)) p = k.shape[0] - factor return upfirdn2d(x, torch.tensor(k, device=x.device), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)) def downsample_2d(x, k=None, factor=2, gain=1): r"""Downsample a batch of 2D images with the given filter. Args: Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is a multiple of the downsampling factor. x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`. k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] * factor`, which corresponds to average pooling. factor: Integer downsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0). Returns: Tensor of the shape `[N, C, H // factor, W // factor]` """ assert isinstance(factor, int) and factor >= 1 if k is None: k = [1] * factor k = _setup_kernel(k) * gain p = k.shape[0] - factor return upfirdn2d(x, torch.tensor(k, device=x.device), down=factor, pad=((p + 1) // 2, p // 2)) def _setup_kernel(k): k = np.asarray(k, dtype=np.float32) if k.ndim == 1: k = np.outer(k, k) k /= np.sum(k) assert k.ndim == 2 assert k.shape[0] == k.shape[1] return k