#!/usr/bin/env python3 import os import pathlib from modeling_ddpm import DDPM import PIL.Image import numpy as np model_ids = ["ddpm-lsun-cat", "ddpm-lsun-cat-ema", "ddpm-lsun-church-ema", "ddpm-lsun-church", "ddpm-lsun-bedroom", "ddpm-lsun-bedroom-ema", "ddpm-cifar10-ema", "ddpm-cifar10", "ddpm-celeba-hq", "ddpm-celeba-hq-ema"] for model_id in model_ids: path = os.path.join("/home/patrick/images/hf", model_id) pathlib.Path(path).mkdir(parents=True, exist_ok=True) ddpm = DDPM.from_pretrained("fusing/" + model_id) image = ddpm(batch_size=4) image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = (image_processed + 1.0) * 127.5 image_processed = image_processed.numpy().astype(np.uint8) for i in range(image_processed.shape[0]): image_pil = PIL.Image.fromarray(image_processed[i]) image_pil.save(os.path.join(path, f"image_{i}.png"))