# Batch inference Batch inference processes multiple prompts at a time to increase throughput. It is more efficient because processing multiple prompts at once maximizes GPU usage versus processing a single prompt and underutilizing the GPU. The downside is increased latency because you must wait for the entire batch to complete, and more GPU memory is required for large batches. For text-to-image, pass a list of prompts to the pipeline. ```py import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") prompts = [ "cinematic photo of A beautiful sunset over mountains, 35mm photograph, film, professional, 4k, highly detailed", "cinematic film still of a cat basking in the sun on a roof in Turkey, highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain", "pixel-art a cozy coffee shop interior, low-res, blocky, pixel art style, 8-bit graphics" ] images = pipeline( prompt=prompts, ).images fig, axes = plt.subplots(2, 2, figsize=(12, 12)) axes = axes.flatten() for i, image in enumerate(images): axes[i].imshow(image) axes[i].set_title(f"Image {i+1}") axes[i].axis('off') plt.tight_layout() plt.show() ``` To generate multiple variations of one prompt, use the `num_images_per_prompt` argument. ```py import torch import matplotlib.pyplot as plt from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") images = pipeline( prompt="pixel-art a cozy coffee shop interior, low-res, blocky, pixel art style, 8-bit graphics", num_images_per_prompt=4 ).images fig, axes = plt.subplots(2, 2, figsize=(12, 12)) axes = axes.flatten() for i, image in enumerate(images): axes[i].imshow(image) axes[i].set_title(f"Image {i+1}") axes[i].axis('off') plt.tight_layout() plt.show() ``` Combine both approaches to generate different variations of different prompts. ```py images = pipeline( prompt=prompts, num_images_per_prompt=2, ).images fig, axes = plt.subplots(2, 2, figsize=(12, 12)) axes = axes.flatten() for i, image in enumerate(images): axes[i].imshow(image) axes[i].set_title(f"Image {i+1}") axes[i].axis('off') plt.tight_layout() plt.show() ``` For image-to-image, pass a list of input images and prompts to the pipeline. ```py import torch from diffusers.utils import load_image from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") input_images = [ load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/inpaint.png"), load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"), load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/detail-prompt.png") ] prompts = [ "cinematic photo of a beautiful sunset over mountains, 35mm photograph, film, professional, 4k, highly detailed", "cinematic film still of a cat basking in the sun on a roof in Turkey, highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain", "pixel-art a cozy coffee shop interior, low-res, blocky, pixel art style, 8-bit graphics" ] images = pipeline( prompt=prompts, image=input_images, guidance_scale=8.0, strength=0.5 ).images fig, axes = plt.subplots(2, 2, figsize=(12, 12)) axes = axes.flatten() for i, image in enumerate(images): axes[i].imshow(image) axes[i].set_title(f"Image {i+1}") axes[i].axis('off') plt.tight_layout() plt.show() ``` To generate multiple variations of one prompt, use the `num_images_per_prompt` argument. ```py import torch import matplotlib.pyplot as plt from diffusers.utils import load_image from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/detail-prompt.png") images = pipeline( prompt="pixel-art a cozy coffee shop interior, low-res, blocky, pixel art style, 8-bit graphics", image=input_image, num_images_per_prompt=4 ).images fig, axes = plt.subplots(2, 2, figsize=(12, 12)) axes = axes.flatten() for i, image in enumerate(images): axes[i].imshow(image) axes[i].set_title(f"Image {i+1}") axes[i].axis('off') plt.tight_layout() plt.show() ``` Combine both approaches to generate different variations of different prompts. ```py input_images = [ load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"), load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/detail-prompt.png") ] prompts = [ "cinematic film still of a cat basking in the sun on a roof in Turkey, highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain", "pixel-art a cozy coffee shop interior, low-res, blocky, pixel art style, 8-bit graphics" ] images = pipeline( prompt=prompts, image=input_images, num_images_per_prompt=2, ).images fig, axes = plt.subplots(2, 2, figsize=(12, 12)) axes = axes.flatten() for i, image in enumerate(images): axes[i].imshow(image) axes[i].set_title(f"Image {i+1}") axes[i].axis('off') plt.tight_layout() plt.show() ``` ## Deterministic generation Enable reproducible batch generation by passing a list of [Generator’s](https://pytorch.org/docs/stable/generated/torch.Generator.html) to the pipeline and tie each `Generator` to a seed to reuse it. Use a list comprehension to iterate over the batch size specified in `range()` to create a unique `Generator` object for each image in the batch. Don't multiply the `Generator` by the batch size because that only creates one `Generator` object that is used sequentially for each image in the batch. ```py generator = [torch.Generator(device="cuda").manual_seed(0)] * 3 ``` Pass the `generator` to the pipeline. ```py import torch from diffusers import DiffusionPipeline pipeline = DiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 ).to("cuda") generator = [torch.Generator(device="cuda").manual_seed(i) for i in range(3)] prompts = [ "cinematic photo of A beautiful sunset over mountains, 35mm photograph, film, professional, 4k, highly detailed", "cinematic film still of a cat basking in the sun on a roof in Turkey, highly detailed, high budget hollywood movie, cinemascope, moody, epic, gorgeous, film grain", "pixel-art a cozy coffee shop interior, low-res, blocky, pixel art style, 8-bit graphics" ] images = pipeline( prompt=prompts, generator=generator ).images fig, axes = plt.subplots(2, 2, figsize=(12, 12)) axes = axes.flatten() for i, image in enumerate(images): axes[i].imshow(image) axes[i].set_title(f"Image {i+1}") axes[i].axis('off') plt.tight_layout() plt.show() ``` You can use this to iteratively select an image associated with a seed and then improve on it by crafting a more detailed prompt.