import gc import tempfile import torch from diffusers import ControlNetModel, StableDiffusionControlNetPipeline from diffusers.loaders.single_file_utils import _extract_repo_id_and_weights_name from diffusers.utils import load_image from ..testing_utils import ( backend_empty_cache, enable_full_determinism, numpy_cosine_similarity_distance, require_torch_accelerator, slow, torch_device, ) from .single_file_testing_utils import ( SDSingleFileTesterMixin, download_diffusers_config, download_original_config, download_single_file_checkpoint, ) enable_full_determinism() @slow @require_torch_accelerator class TestStableDiffusionControlNetPipelineSingleFileSlow(SDSingleFileTesterMixin): pipeline_class = StableDiffusionControlNetPipeline ckpt_path = ( "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5/blob/main/v1-5-pruned-emaonly.safetensors" ) original_config = ( "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) repo_id = "stable-diffusion-v1-5/stable-diffusion-v1-5" def setup_method(self): gc.collect() backend_empty_cache(torch_device) def teardown_method(self): gc.collect() backend_empty_cache(torch_device) def get_inputs(self): control_image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512)) inputs = { "prompt": "bird", "image": control_image, "generator": torch.Generator(device="cpu").manual_seed(0), "num_inference_steps": 3, "output_type": "np", } return inputs def test_single_file_format_inference_is_same_as_pretrained(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet) pipe.unet.set_default_attn_processor() pipe.enable_model_cpu_offload(device=torch_device) pipe_sf = self.pipeline_class.from_single_file( self.ckpt_path, controlnet=controlnet, ) pipe_sf.unet.set_default_attn_processor() pipe_sf.enable_model_cpu_offload(device=torch_device) inputs = self.get_inputs() output = pipe(**inputs).images[0] inputs = self.get_inputs() output_sf = pipe_sf(**inputs).images[0] max_diff = numpy_cosine_similarity_distance(output_sf.flatten(), output.flatten()) assert max_diff < 1e-3 def test_single_file_components(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") pipe = self.pipeline_class.from_pretrained( self.repo_id, variant="fp16", safety_checker=None, controlnet=controlnet ) pipe_single_file = self.pipeline_class.from_single_file( self.ckpt_path, safety_checker=None, controlnet=controlnet, ) super()._compare_component_configs(pipe, pipe_single_file) def test_single_file_components_local_files_only(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny") pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet) with tempfile.TemporaryDirectory() as tmpdir: repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) pipe_single_file = self.pipeline_class.from_single_file( local_ckpt_path, controlnet=controlnet, local_files_only=True ) super()._compare_component_configs(pipe, pipe_single_file) def test_single_file_components_with_original_config(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", variant="fp16") pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet) pipe_single_file = self.pipeline_class.from_single_file( self.ckpt_path, controlnet=controlnet, original_config=self.original_config ) super()._compare_component_configs(pipe, pipe_single_file) def test_single_file_components_with_original_config_local_files_only(self): controlnet = ControlNetModel.from_pretrained( "lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16, variant="fp16" ) pipe = self.pipeline_class.from_pretrained( self.repo_id, controlnet=controlnet, ) with tempfile.TemporaryDirectory() as tmpdir: repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) local_original_config = download_original_config(self.original_config, tmpdir) pipe_single_file = self.pipeline_class.from_single_file( local_ckpt_path, original_config=local_original_config, controlnet=controlnet, local_files_only=True ) pipe_single_file.scheduler = pipe.scheduler super()._compare_component_configs(pipe, pipe_single_file) def test_single_file_components_with_diffusers_config(self): controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_canny", variant="fp16") pipe = self.pipeline_class.from_pretrained(self.repo_id, controlnet=controlnet) pipe_single_file = self.pipeline_class.from_single_file( self.ckpt_path, controlnet=controlnet, safety_checker=None, config=self.repo_id ) super()._compare_component_configs(pipe, pipe_single_file) def test_single_file_components_with_diffusers_config_local_files_only(self): controlnet = ControlNetModel.from_pretrained( "lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16, variant="fp16" ) pipe = self.pipeline_class.from_pretrained( self.repo_id, controlnet=controlnet, safety_checker=None, ) with tempfile.TemporaryDirectory() as tmpdir: repo_id, weight_name = _extract_repo_id_and_weights_name(self.ckpt_path) local_ckpt_path = download_single_file_checkpoint(repo_id, weight_name, tmpdir) local_diffusers_config = download_diffusers_config(self.repo_id, tmpdir) pipe_single_file = self.pipeline_class.from_single_file( local_ckpt_path, config=local_diffusers_config, controlnet=controlnet, safety_checker=None, local_files_only=True, ) super()._compare_component_configs(pipe, pipe_single_file) def test_single_file_setting_pipeline_dtype_to_fp16(self): controlnet = ControlNetModel.from_pretrained( "lllyasviel/control_v11p_sd15_canny", torch_dtype=torch.float16, variant="fp16" ) single_file_pipe = self.pipeline_class.from_single_file( self.ckpt_path, controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16 ) super().test_single_file_setting_pipeline_dtype_to_fp16(single_file_pipe)