import gc import pytest import torch from diffusers import ( StableDiffusionUpscalePipeline, ) from diffusers.utils import load_image from ..testing_utils import ( backend_empty_cache, enable_full_determinism, numpy_cosine_similarity_distance, require_torch_accelerator, slow, torch_device, ) from .single_file_testing_utils import SDSingleFileTesterMixin enable_full_determinism() @slow @require_torch_accelerator class TestStableDiffusionUpscalePipelineSingleFileSlow(SDSingleFileTesterMixin): pipeline_class = StableDiffusionUpscalePipeline ckpt_path = "https://huggingface.co/stabilityai/stable-diffusion-x4-upscaler/blob/main/x4-upscaler-ema.safetensors" original_config = "https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/x4-upscaling.yaml" repo_id = "stabilityai/stable-diffusion-x4-upscaler" def setup_method(self): gc.collect() backend_empty_cache(torch_device) def teardown_method(self): gc.collect() backend_empty_cache(torch_device) def test_single_file_format_inference_is_same_as_pretrained(self): image = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) prompt = "a cat sitting on a park bench" pipe = StableDiffusionUpscalePipeline.from_pretrained(self.repo_id) pipe.enable_model_cpu_offload(device=torch_device) generator = torch.Generator("cpu").manual_seed(0) output = pipe(prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3) image_from_pretrained = output.images[0] pipe_from_single_file = StableDiffusionUpscalePipeline.from_single_file(self.ckpt_path) pipe_from_single_file.enable_model_cpu_offload(device=torch_device) generator = torch.Generator("cpu").manual_seed(0) output_from_single_file = pipe_from_single_file( prompt=prompt, image=image, generator=generator, output_type="np", num_inference_steps=3 ) image_from_single_file = output_from_single_file.images[0] assert image_from_pretrained.shape == (512, 512, 3) assert image_from_single_file.shape == (512, 512, 3) assert ( numpy_cosine_similarity_distance(image_from_pretrained.flatten(), image_from_single_file.flatten()) < 1e-3 ) @pytest.mark.xfail( condition=True, reason="Test fails because of mismatches in the configs but it is very hard to properly fix this considering downstream usecase.", strict=True, ) def test_single_file_components_with_original_config(self): super().test_single_file_components_with_original_config() @pytest.mark.xfail( condition=True, reason="Test fails because of mismatches in the configs but it is very hard to properly fix this considering downstream usecase.", strict=True, ) def test_single_file_components_with_original_config_local_files_only(self): super().test_single_file_components_with_original_config_local_files_only()