# Building Custom Blocks [ModularPipelineBlocks](./pipeline_block) are the fundamental building blocks of a [`ModularPipeline`]. You can create custom blocks by defining their inputs, outputs, and computation logic. This guide demonstrates how to create and use a custom block. > [!TIP] > Explore the [Modular Diffusers Custom Blocks](https://huggingface.co/collections/diffusers/modular-diffusers-custom-blocks) collection for official custom modular blocks like Nano Banana. ## Project Structure Your custom block project should use the following structure: ```shell . ├── block.py └── modular_config.json ``` - `block.py` contains the custom block implementation - `modular_config.json` contains the metadata needed to load the block ## Example: Florence 2 Inpainting Block In this example we will create a custom block that uses the [Florence 2](https://huggingface.co/docs/transformers/model_doc/florence2) model to process an input image and generate a mask for inpainting. The first step is to define the components that the block will use. In this case, we will need to use the `Florence2ForConditionalGeneration` model and its corresponding processor `AutoProcessor`. When defining components, we must specify the name of the component within our pipeline, model class via `type_hint`, and provide a `pretrained_model_name_or_path` for the component if we intend to load the model weights from a specific repository on the Hub. ```py # Inside block.py from diffusers.modular_pipelines import ( ModularPipelineBlocks, ComponentSpec, ) from transformers import AutoProcessor, Florence2ForConditionalGeneration class Florence2ImageAnnotatorBlock(ModularPipelineBlocks): @property def expected_components(self): return [ ComponentSpec( name="image_annotator", type_hint=Florence2ForConditionalGeneration, pretrained_model_name_or_path="florence-community/Florence-2-base-ft", ), ComponentSpec( name="image_annotator_processor", type_hint=AutoProcessor, pretrained_model_name_or_path="florence-community/Florence-2-base-ft", ), ] ``` Next, we define the inputs and outputs of the block. The inputs include the image to be annotated, the annotation task, and the annotation prompt. The outputs include the generated mask image and annotations. ```py from typing import List, Union from PIL import Image, ImageDraw import torch import numpy as np from diffusers.modular_pipelines import ( PipelineState, ModularPipelineBlocks, InputParam, ComponentSpec, OutputParam, ) from transformers import AutoProcessor, Florence2ForConditionalGeneration class Florence2ImageAnnotatorBlock(ModularPipelineBlocks): @property def expected_components(self): return [ ComponentSpec( name="image_annotator", type_hint=Florence2ForConditionalGeneration, pretrained_model_name_or_path="florence-community/Florence-2-base-ft", ), ComponentSpec( name="image_annotator_processor", type_hint=AutoProcessor, pretrained_model_name_or_path="florence-community/Florence-2-base-ft", ), ] @property def inputs(self) -> List[InputParam]: return [ InputParam( "image", type_hint=Union[Image.Image, List[Image.Image]], required=True, description="Image(s) to annotate", ), InputParam( "annotation_task", type_hint=Union[str, List[str]], required=True, default="", description="""Annotation Task to perform on the image. Supported Tasks: """, ), InputParam( "annotation_prompt", type_hint=Union[str, List[str]], required=True, description="""Annotation Prompt to provide more context to the task. Can be used to detect or segment out specific elements in the image """, ), InputParam( "annotation_output_type", type_hint=str, required=True, default="mask_image", description="""Output type from annotation predictions. Available options are mask_image: -black and white mask image for the given image based on the task type mask_overlay: - mask overlayed on the original image bounding_box: - bounding boxes drawn on the original image """, ), InputParam( "annotation_overlay", type_hint=bool, required=True, default=False, description="", ), ] @property def intermediate_outputs(self) -> List[OutputParam]: return [ OutputParam( "mask_image", type_hint=Image, description="Inpainting Mask for input Image(s)", ), OutputParam( "annotations", type_hint=dict, description="Annotations Predictions for input Image(s)", ), OutputParam( "image", type_hint=Image, description="Annotated input Image(s)", ), ] ``` Now we implement the `__call__` method, which contains the logic for processing the input image and generating the mask. ```py from typing import List, Union from PIL import Image, ImageDraw import torch import numpy as np from diffusers.modular_pipelines import ( PipelineState, ModularPipelineBlocks, InputParam, ComponentSpec, OutputParam, ) from transformers import AutoProcessor, Florence2ForConditionalGeneration class Florence2ImageAnnotatorBlock(ModularPipelineBlocks): @property def expected_components(self): return [ ComponentSpec( name="image_annotator", type_hint=Florence2ForConditionalGeneration, pretrained_model_name_or_path="florence-community/Florence-2-base-ft", ), ComponentSpec( name="image_annotator_processor", type_hint=AutoProcessor, pretrained_model_name_or_path="florence-community/Florence-2-base-ft", ), ] @property def inputs(self) -> List[InputParam]: return [ InputParam( "image", type_hint=Union[Image.Image, List[Image.Image]], required=True, description="Image(s) to annotate", ), InputParam( "annotation_task", type_hint=Union[str, List[str]], required=True, default="", description="""Annotation Task to perform on the image. Supported Tasks: """, ), InputParam( "annotation_prompt", type_hint=Union[str, List[str]], required=True, description="""Annotation Prompt to provide more context to the task. Can be used to detect or segment out specific elements in the image """, ), InputParam( "annotation_output_type", type_hint=str, required=True, default="mask_image", description="""Output type from annotation predictions. Available options are mask_image: -black and white mask image for the given image based on the task type mask_overlay: - mask overlayed on the original image bounding_box: - bounding boxes drawn on the original image """, ), InputParam( "annotation_overlay", type_hint=bool, required=True, default=False, description="", ), ] @property def intermediate_outputs(self) -> List[OutputParam]: return [ OutputParam( "mask_image", type_hint=Image, description="Inpainting Mask for input Image(s)", ), OutputParam( "annotations", type_hint=dict, description="Annotations Predictions for input Image(s)", ), OutputParam( "image", type_hint=Image, description="Annotated input Image(s)", ), ] def get_annotations(self, components, images, prompts, task): task_prompts = [task + prompt for prompt in prompts] inputs = components.image_annotator_processor( text=task_prompts, images=images, return_tensors="pt" ).to(components.image_annotator.device, components.image_annotator.dtype) generated_ids = components.image_annotator.generate( input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, early_stopping=False, do_sample=False, num_beams=3, ) annotations = components.image_annotator_processor.batch_decode( generated_ids, skip_special_tokens=False ) outputs = [] for image, annotation in zip(images, annotations): outputs.append( components.image_annotator_processor.post_process_generation( annotation, task=task, image_size=(image.width, image.height) ) ) return outputs def prepare_mask(self, images, annotations, overlay=False, fill="white"): masks = [] for image, annotation in zip(images, annotations): mask_image = image.copy() if overlay else Image.new("L", image.size, 0) draw = ImageDraw.Draw(mask_image) for _, _annotation in annotation.items(): if "polygons" in _annotation: for polygon in _annotation["polygons"]: polygon = np.array(polygon).reshape(-1, 2) if len(polygon) < 3: continue polygon = polygon.reshape(-1).tolist() draw.polygon(polygon, fill=fill) elif "bbox" in _annotation: bbox = _annotation["bbox"] draw.rectangle(bbox, fill="white") masks.append(mask_image) return masks def prepare_bounding_boxes(self, images, annotations): outputs = [] for image, annotation in zip(images, annotations): image_copy = image.copy() draw = ImageDraw.Draw(image_copy) for _, _annotation in annotation.items(): bbox = _annotation["bbox"] label = _annotation["label"] draw.rectangle(bbox, outline="red", width=3) draw.text((bbox[0], bbox[1] - 20), label, fill="red") outputs.append(image_copy) return outputs def prepare_inputs(self, images, prompts): prompts = prompts or "" if isinstance(images, Image.Image): images = [images] if isinstance(prompts, str): prompts = [prompts] if len(images) != len(prompts): raise ValueError("Number of images and annotation prompts must match.") return images, prompts @torch.no_grad() def __call__(self, components, state: PipelineState) -> PipelineState: block_state = self.get_block_state(state) images, annotation_task_prompt = self.prepare_inputs( block_state.image, block_state.annotation_prompt ) task = block_state.annotation_task fill = block_state.fill annotations = self.get_annotations( components, images, annotation_task_prompt, task ) block_state.annotations = annotations if block_state.annotation_output_type == "mask_image": block_state.mask_image = self.prepare_mask(images, annotations) else: block_state.mask_image = None if block_state.annotation_output_type == "mask_overlay": block_state.image = self.prepare_mask(images, annotations, overlay=True, fill=fill) elif block_state.annotation_output_type == "bounding_box": block_state.image = self.prepare_bounding_boxes(images, annotations) self.set_block_state(state, block_state) return components, state ``` Once we have defined our custom block, we can save it to the Hub, using either the CLI or the [`push_to_hub`] method. This will make it easy to share and reuse our custom block with other pipelines. ```shell # In the folder with the `block.py` file, run: diffusers-cli custom_block ``` Then upload the block to the Hub: ```shell hf upload . . ``` ```py from block import Florence2ImageAnnotatorBlock block = Florence2ImageAnnotatorBlock() block.push_to_hub("") ``` ## Using Custom Blocks Load the custom block with [`~ModularPipelineBlocks.from_pretrained`] and set `trust_remote_code=True`. ```py import torch from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS from diffusers.utils import load_image # Fetch the Florence2 image annotator block that will create our mask image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True) my_blocks = INPAINT_BLOCKS.copy() # insert the annotation block before the image encoding step my_blocks.insert("image_annotator", image_annotator_block, 1) # Create our initial set of inpainting blocks blocks = SequentialPipelineBlocks.from_blocks_dict(my_blocks) repo_id = "diffusers/modular-stable-diffusion-xl-base-1.0" pipe = blocks.init_pipeline(repo_id) pipe.load_components(torch_dtype=torch.float16, device_map="cuda", trust_remote_code=True) image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg?download=true") image = image.resize((1024, 1024)) prompt = ["A red car"] annotation_task = "" annotation_prompt = ["the car"] output = pipe( prompt=prompt, image=image, annotation_task=annotation_task, annotation_prompt=annotation_prompt, annotation_output_type="mask_image", num_inference_steps=35, guidance_scale=7.5, strength=0.95, output="images" ) output[0].save("florence-inpainting.png") ``` ## Editing Custom Blocks By default, custom blocks are saved in your cache directory. Use the `local_dir` argument to download and edit a custom block in a specific folder. ```py import torch from diffusers.modular_pipelines import ModularPipelineBlocks, SequentialPipelineBlocks from diffusers.modular_pipelines.stable_diffusion_xl import INPAINT_BLOCKS from diffusers.utils import load_image # Fetch the Florence2 image annotator block that will create our mask image_annotator_block = ModularPipelineBlocks.from_pretrained("diffusers/florence-2-custom-block", trust_remote_code=True, local_dir="/my-local-folder") ``` Any changes made to the block files in this folder will be reflected when you load the block again.