# QwenImage
LoRA
Qwen-Image from the Qwen team is an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese. Qwen-Image comes in the following variants: | model type | model id | |:----------:|:--------:| | Qwen-Image | [`Qwen/Qwen-Image`](https://huggingface.co/Qwen/Qwen-Image) | | Qwen-Image-Edit | [`Qwen/Qwen-Image-Edit`](https://huggingface.co/Qwen/Qwen-Image-Edit) | | Qwen-Image-Edit Plus | [Qwen/Qwen-Image-Edit-2509](https://huggingface.co/Qwen/Qwen-Image-Edit-2509) | > [!TIP] > [Caching](../../optimization/cache) may also speed up inference by storing and reusing intermediate outputs. ## LoRA for faster inference Use a LoRA from `lightx2v/Qwen-Image-Lightning` to speed up inference by reducing the number of steps. Refer to the code snippet below:
Code ```py from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler import torch import math ckpt_id = "Qwen/Qwen-Image" # From # https://github.com/ModelTC/Qwen-Image-Lightning/blob/342260e8f5468d2f24d084ce04f55e101007118b/generate_with_diffusers.py#L82C9-L97C10 scheduler_config = { "base_image_seq_len": 256, "base_shift": math.log(3), # We use shift=3 in distillation "invert_sigmas": False, "max_image_seq_len": 8192, "max_shift": math.log(3), # We use shift=3 in distillation "num_train_timesteps": 1000, "shift": 1.0, "shift_terminal": None, # set shift_terminal to None "stochastic_sampling": False, "time_shift_type": "exponential", "use_beta_sigmas": False, "use_dynamic_shifting": True, "use_exponential_sigmas": False, "use_karras_sigmas": False, } scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config) pipe = DiffusionPipeline.from_pretrained( ckpt_id, scheduler=scheduler, torch_dtype=torch.bfloat16 ).to("cuda") pipe.load_lora_weights( "lightx2v/Qwen-Image-Lightning", weight_name="Qwen-Image-Lightning-8steps-V1.0.safetensors" ) prompt = "a tiny astronaut hatching from an egg on the moon, Ultra HD, 4K, cinematic composition." negative_prompt = " " image = pipe( prompt=prompt, negative_prompt=negative_prompt, width=1024, height=1024, num_inference_steps=8, true_cfg_scale=1.0, generator=torch.manual_seed(0), ).images[0] image.save("qwen_fewsteps.png") ```
> [!TIP] > The `guidance_scale` parameter in the pipeline is there to support future guidance-distilled models when they come up. Note that passing `guidance_scale` to the pipeline is ineffective. To enable classifier-free guidance, please pass `true_cfg_scale` and `negative_prompt` (even an empty negative prompt like " ") should enable classifier-free guidance computations. ## Multi-image reference with QwenImageEditPlusPipeline With [`QwenImageEditPlusPipeline`], one can provide multiple images as input reference. ```py import torch from PIL import Image from diffusers import QwenImageEditPlusPipeline from diffusers.utils import load_image pipe = QwenImageEditPlusPipeline.from_pretrained( "Qwen/Qwen-Image-Edit-2509", torch_dtype=torch.bfloat16 ).to("cuda") image_1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/grumpy.jpg") image_2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/peng.png") image = pipe( image=[image_1, image_2], prompt='''put the penguin and the cat at a game show called "Qwen Edit Plus Games"''', num_inference_steps=50 ).images[0] ``` ## Performance ### torch.compile Using `torch.compile` on the transformer provides ~2.4x speedup (A100 80GB: 4.70s → 1.93s): ```python import torch from diffusers import QwenImagePipeline pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=torch.bfloat16).to("cuda") pipe.transformer = torch.compile(pipe.transformer) # First call triggers compilation (~7s overhead) # Subsequent calls run at ~2.4x faster image = pipe("a cat", num_inference_steps=50).images[0] ``` ### Batched Inference with Variable-Length Prompts When using classifier-free guidance (CFG) with prompts of different lengths, the pipeline properly handles padding through attention masking. This ensures padding tokens do not influence the generated output. ```python # CFG with different prompt lengths works correctly image = pipe( prompt="A cat", negative_prompt="blurry, low quality, distorted", true_cfg_scale=3.5, num_inference_steps=50, ).images[0] ``` For detailed benchmark scripts and results, see [this gist](https://gist.github.com/cdutr/bea337e4680268168550292d7819dc2f). ## QwenImagePipeline [[autodoc]] QwenImagePipeline - all - __call__ ## QwenImageImg2ImgPipeline [[autodoc]] QwenImageImg2ImgPipeline - all - __call__ ## QwenImageInpaintPipeline [[autodoc]] QwenImageInpaintPipeline - all - __call__ ## QwenImageEditPipeline [[autodoc]] QwenImageEditPipeline - all - __call__ ## QwenImageEditInpaintPipeline [[autodoc]] QwenImageEditInpaintPipeline - all - __call__ ## QwenImageControlNetPipeline [[autodoc]] QwenImageControlNetPipeline - all - __call__ ## QwenImageEditPlusPipeline [[autodoc]] QwenImageEditPlusPipeline - all - __call__ ## QwenImagePipelineOutput [[autodoc]] pipelines.qwenimage.pipeline_output.QwenImagePipelineOutput