# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers.models.transformers.transformer_prx import PRXTransformer2DModel from ...testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class PRXTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = PRXTransformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): return self.prepare_dummy_input() @property def input_shape(self): return (16, 16, 16) @property def output_shape(self): return (16, 16, 16) def prepare_dummy_input(self, height=16, width=16): batch_size = 1 num_latent_channels = 16 sequence_length = 16 embedding_dim = 1792 hidden_states = torch.randn((batch_size, num_latent_channels, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.tensor([1.0]).to(torch_device).expand(batch_size) return { "hidden_states": hidden_states, "timestep": timestep, "encoder_hidden_states": encoder_hidden_states, } def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 16, "patch_size": 2, "context_in_dim": 1792, "hidden_size": 1792, "mlp_ratio": 3.5, "num_heads": 28, "depth": 4, # Smaller depth for testing "axes_dim": [32, 32], "theta": 10_000, } inputs_dict = self.prepare_dummy_input() return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"PRXTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) if __name__ == "__main__": unittest.main()