# 文生图 > [!WARNING] > 文生图训练脚本目前处于实验阶段,容易出现过拟合和灾难性遗忘等问题。建议尝试不同超参数以获得最佳数据集适配效果。 Stable Diffusion 等文生图模型能够根据文本提示生成对应图像。 模型训练对硬件要求较高,但启用 `gradient_checkpointing` 和 `mixed_precision` 后,可在单块24GB显存GPU上完成训练。如需更大批次或更快训练速度,建议使用30GB以上显存的GPU设备。通过启用 [xFormers](../optimization/xformers) 内存高效注意力机制可降低显存占用。JAX/Flax 训练方案也支持TPU/GPU高效训练,但不支持梯度检查点、梯度累积和xFormers。使用Flax训练时建议配备30GB以上显存GPU或TPU v3。 本指南将详解 [train_text_to_image.py](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py) 训练脚本,助您掌握其原理并适配自定义需求。 运行脚本前请确保已从源码安装库: ```bash git clone https://github.com/huggingface/diffusers cd diffusers pip install . ``` 然后进入包含训练脚本的示例目录,安装对应依赖: ```bash cd examples/text_to_image pip install -r requirements.txt ``` ```bash cd examples/text_to_image pip install -r requirements_flax.txt ``` > [!TIP] > 🤗 Accelerate 是支持多GPU/TPU训练和混合精度的工具库,能根据硬件环境自动配置训练参数。参阅 🤗 Accelerate [快速入门](https://huggingface.co/docs/accelerate/quicktour) 了解更多。 初始化 🤗 Accelerate 环境: ```bash accelerate config ``` 要创建默认配置环境(不进行交互式选择): ```bash accelerate config default ``` 若环境不支持交互式shell(如notebook),可使用: ```py from accelerate.utils import write_basic_config write_basic_config() ``` 最后,如需在自定义数据集上训练,请参阅 [创建训练数据集](create_dataset) 指南了解如何准备适配脚本的数据集。 ## 脚本参数 > [!TIP] > 以下重点介绍脚本中影响训练效果的关键参数,如需完整参数说明可查阅 [脚本源码](https://github.com/huggingface/diffusers/blob/main/examples/text_to_image/train_text_to_image.py)。如有疑问欢迎反馈。 训练脚本提供丰富参数供自定义训练流程,所有参数及说明详见 [`parse_args()`](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L193) 函数。该函数为每个参数提供默认值(如批次大小、学习率等),也可通过命令行参数覆盖。 例如使用fp16混合精度加速训练: ```bash accelerate launch train_text_to_image.py \ --mixed_precision="fp16" ``` 基础重要参数包括: - `--pretrained_model_name_or_path`: Hub模型名称或本地预训练模型路径 - `--dataset_name`: Hub数据集名称或本地训练数据集路径 - `--image_column`: 数据集中图像列名 - `--caption_column`: 数据集中文本列名 - `--output_dir`: 模型保存路径 - `--push_to_hub`: 是否将训练模型推送至Hub - `--checkpointing_steps`: 模型检查点保存步数;训练中断时可添加 `--resume_from_checkpoint` 从该检查点恢复训练 ### Min-SNR加权策略 [Min-SNR](https://huggingface.co/papers/2303.09556) 加权策略通过重新平衡损失函数加速模型收敛。训练脚本支持预测 `epsilon`(噪声)或 `v_prediction`,而Min-SNR兼容两种预测类型。该策略仅限PyTorch版本,Flax训练脚本不支持。 添加 `--snr_gamma` 参数并设为推荐值5.0: ```bash accelerate launch train_text_to_image.py \ --snr_gamma=5.0 ``` 可通过此 [Weights and Biases](https://wandb.ai/sayakpaul/text2image-finetune-minsnr) 报告比较不同 `snr_gamma` 值的损失曲面。小数据集上Min-SNR效果可能不如大数据集显著。 ## 训练脚本解析 数据集预处理代码和训练循环位于 [`main()`](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L490) 函数,自定义修改需在此处进行。 `train_text_to_image` 脚本首先 [加载调度器](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L543) 和分词器,此处可替换其他调度器: ```py noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") tokenizer = CLIPTokenizer.from_pretrained( args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision ) ``` 接着 [加载UNet模型](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L619): ```py load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") model.register_to_config(**load_model.config) model.load_state_dict(load_model.state_dict()) ``` 随后对数据集的文本和图像列进行预处理。[`tokenize_captions`](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L724) 函数处理文本分词,[`train_transforms`](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L742) 定义图像增强策略,二者集成于 `preprocess_train`: ```py def preprocess_train(examples): images = [image.convert("RGB") for image in examples[image_column]] examples["pixel_values"] = [train_transforms(image) for image in images] examples["input_ids"] = tokenize_captions(examples) return examples ``` 最后,[训练循环](https://github.com/huggingface/diffusers/blob/8959c5b9dec1c94d6ba482c94a58d2215c5fd026/examples/text_to_image/train_text_to_image.py#L878) 处理剩余流程:图像编码为潜空间、添加噪声、计算文本嵌入条件、更新模型参数、保存并推送模型至Hub。想深入了解训练循环原理,可参阅 [理解管道、模型与调度器](../using-diffusers/write_own_pipeline) 教程,该教程解析了去噪过程的核心逻辑。 ## 启动脚本 完成所有配置后,即可启动训练脚本!🚀 以 [火影忍者BLIP标注数据集](https://huggingface.co/datasets/lambdalabs/naruto-blip-captions) 为例训练生成火影角色。设置环境变量 `MODEL_NAME` 和 `dataset_name` 指定模型和数据集(Hub或本地路径)。多GPU训练需在 `accelerate launch` 命令中添加 `--multi_gpu` 参数。 > [!TIP] > 使用本地数据集时,设置 `TRAIN_DIR` 和 `OUTPUT_DIR` 环境变量为数据集路径和模型保存路径。 ```bash export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5" export dataset_name="lambdalabs/naruto-blip-captions" accelerate launch --mixed_precision="fp16" train_text_to_image.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$dataset_name \ --use_ema \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --gradient_accumulation_steps=4 \ --gradient_checkpointing \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --enable_xformers_memory_efficient_attention \ --lr_scheduler="constant" --lr_warmup_steps=0 \ --output_dir="sd-naruto-model" \ --push_to_hub ``` Flax训练方案在TPU/GPU上效率更高(由 [@duongna211](https://github.com/duongna21) 实现),TPU性能更优但GPU表现同样出色。 设置环境变量 `MODEL_NAME` 和 `dataset_name` 指定模型和数据集(Hub或本地路径)。 > [!TIP] > 使用本地数据集时,设置 `TRAIN_DIR` 和 `OUTPUT_DIR` 环境变量为数据集路径和模型保存路径。 ```bash export MODEL_NAME="stable-diffusion-v1-5/stable-diffusion-v1-5" export dataset_name="lambdalabs/naruto-blip-captions" python train_text_to_image_flax.py \ --pretrained_model_name_or_path=$MODEL_NAME \ --dataset_name=$dataset_name \ --resolution=512 --center_crop --random_flip \ --train_batch_size=1 \ --max_train_steps=15000 \ --learning_rate=1e-05 \ --max_grad_norm=1 \ --output_dir="sd-naruto-model" \ --push_to_hub ``` 训练完成后,即可使用新模型进行推理: ```py from diffusers import StableDiffusionPipeline import torch pipeline = StableDiffusionPipeline.from_pretrained("path/to/saved_model", torch_dtype=torch.float16, use_safetensors=True).to("cuda") image = pipeline(prompt="yoda").images[0] image.save("yoda-naruto.png") ``` ```py import jax import numpy as np from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxStableDiffusionPipeline pipeline, params = FlaxStableDiffusionPipeline.from_pretrained("path/to/saved_model", dtype=jax.numpy.bfloat16) prompt = "yoda naruto" prng_seed = jax.random.PRNGKey(0) num_inference_steps = 50 num_samples = jax.device_count() prompt = num_samples * [prompt] prompt_ids = pipeline.prepare_inputs(prompt) # 分片输入和随机数 params = replicate(params) prng_seed = jax.random.split(prng_seed, jax.device_count()) prompt_ids = shard(prompt_ids) images = pipeline(prompt_ids, params, prng_seed, num_inference_steps, jit=True).images images = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) image.save("yoda-naruto.png") ``` ## 后续步骤 恭喜完成文生图模型训练!如需进一步使用模型,以下指南可能有所帮助: - 了解如何加载 [LoRA权重](../using-diffusers/loading_adapters#LoRA) 进行推理(如果训练时使用了LoRA) - 在 [文生图](../using-diffusers/conditional_image_generation) 任务指南中,了解引导尺度等参数或提示词加权等技术如何控制生成效果