# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import EasyAnimateTransformer3DModel from diffusers.utils.testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class EasyAnimateTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = EasyAnimateTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 2 height = 16 width = 16 embedding_dim = 16 sequence_length = 16 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "timestep": timestep, "timestep_cond": None, "encoder_hidden_states": encoder_hidden_states, "encoder_hidden_states_t5": None, "inpaint_latents": None, "control_latents": None, } @property def input_shape(self): return (4, 2, 16, 16) @property def output_shape(self): return (4, 2, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "attention_head_dim": 16, "num_attention_heads": 2, "in_channels": 4, "mmdit_layers": 2, "num_layers": 2, "out_channels": 4, "patch_size": 2, "sample_height": 60, "sample_width": 90, "text_embed_dim": 16, "time_embed_dim": 8, "time_position_encoding_type": "3d_rope", "timestep_activation_fn": "silu", } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"EasyAnimateTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)