# 如何使用 Core ML 运行 Stable Diffusion [Core ML](https://developer.apple.com/documentation/coreml) 是 Apple 框架支持的模型格式和机器学习库。如果您有兴趣在 macOS 或 iOS/iPadOS 应用中运行 Stable Diffusion 模型,本指南将展示如何将现有的 PyTorch 检查点转换为 Core ML 格式,并使用 Python 或 Swift 进行推理。 Core ML 模型可以利用 Apple 设备中所有可用的计算引擎:CPU、GPU 和 Apple Neural Engine(或 ANE,一种在 Apple Silicon Mac 和现代 iPhone/iPad 中可用的张量优化加速器)。根据模型及其运行的设备,Core ML 还可以混合和匹配计算引擎,例如,模型的某些部分可能在 CPU 上运行,而其他部分在 GPU 上运行。 > [!TIP] > 您还可以使用 PyTorch 内置的 `mps` 加速器在 Apple Silicon Mac 上运行 `diffusers` Python 代码库。这种方法在 [mps 指南](mps) 中有详细解释,但它与原生应用不兼容。 ## Stable Diffusion Core ML 检查点 Stable Diffusion 权重(或检查点)以 PyTorch 格式存储,因此在使用它们之前,需要将它们转换为 Core ML 格式。 幸运的是,Apple 工程师基于 `diffusers` 开发了 [一个转换工具](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml),用于将 PyTorch 检查点转换为 Core ML。 但在转换模型之前,花点时间探索 Hugging Face Hub——很可能您感兴趣的模型已经以 Core ML 格式提供: - [Apple](https://huggingface.co/apple) 组织包括 Stable Diffusion 版本 1.4、1.5、2.0 基础和 2.1 基础 - [coreml community](https://huggingface.co/coreml-community) 包括自定义微调模型 - 使用此 [过滤器](https://huggingface.co/models?pipeline_tag=text-to-image&library=coreml&p=2&sort=likes) 返回所有可用的 Core ML 检查点 如果您找不到感兴趣的模型,我们建议您遵循 Apple 的 [Converting Models to Core ML](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml) 说明。 ## 选择要使用的 Core ML 变体 Stable Diffusion 模型可以转换为不同的 Core ML 变体,用于不同目的: - 注意力类型 使用了n个块。注意力操作用于“关注”图像表示中不同区域之间的关系,并理解图像和文本表示如何相关。注意力的计算和内存消耗很大,因此存在不同的实现方式,以适应不同设备的硬件特性。对于Core ML Stable Diffusion模型,有两种注意力变体: * `split_einsum`([由Apple引入](https://machinelearning.apple.com/research/neural-engine-transformers))针对ANE设备进行了优化,这些设备在现代iPhone、iPad和M系列计算机中可用。 * “原始”注意力(在`diffusers`中使用的基础实现)仅与CPU/GPU兼容,不与ANE兼容。在CPU + GPU上使用`original`注意力运行模型可能比ANE*更快*。请参阅[此性能基准](https://huggingface.co/blog/fast-mac-diffusers#performance-benchmarks)以及社区提供的[一些额外测量](https://github.com/huggingface/swift-coreml-diffusers/issues/31)以获取更多细节。 - 支持的推理框架。 * `packages`适用于Python推理。这可用于在尝试将转换后的Core ML模型集成到原生应用程序之前进行测试,或者如果您想探索Core ML性能但不需要支持原生应用程序。例如,具有Web UI的应用程序完全可以使用Python Core ML后端。 * `compiled`模型是Swift代码所必需的。Hub中的`compiled`模型将大型UNet模型权重分成多个文件,以兼容iOS和iPadOS设备。这对应于[`--chunk-unet`转换选项](https://github.com/apple/ml-stable-diffusion#-converting-models-to-core-ml)。如果您想支持原生应用程序,则需要选择`compiled`变体。 官方的Core ML Stable Diffusion[模型](https://huggingface.co/apple/coreml-stable-diffusion-v1-4/tree/main)包括这些变体,但社区的可能有所不同: ``` coreml-stable-diffusion-v1-4 ├── README.md ├── original │ ├── compiled │ └── packages └── split_einsum ├── compiled └── packages ``` 您可以下载并使用所需的变体,如下所示。 ## Python中的Core ML推理 安装以下库以在Python中运行Core ML推理: ```bash pip install huggingface_hub pip install git+https://github.com/apple/ml-stable-diffusion ``` ### 下载模型检查点 要在Python中运行推理,请使用存储在`packages`文件夹中的版本之一,因为`compiled`版本仅与Swift兼容。您可以选择使用`original`或`split_einsum`注意力。 这是您如何从Hub下载`original`注意力变体到一个名为`models`的目录: ```Python from huggingface_hub import snapshot_download from pathlib import Path repo_id = "apple/coreml-stable-diffusion-v1-4" variant = "original/packages" mo del_path = Path("./models") / (repo_id.split("/")[-1] + "_" + variant.replace("/", "_")) snapshot_download(repo_id, allow_patterns=f"{variant}/*", local_dir=model_path, local_dir_use_symlinks=False) print(f"Model downloaded at {model_path}") ``` ### 推理[[python-inference]] 下载模型快照后,您可以使用 Apple 的 Python 脚本来测试它。 ```shell python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" -i ./models/coreml-stable-diffusion-v1-4_original_packages/original/packages -o --compute-unit CPU_AND_GPU --seed 93 ``` 使用 `-i` 标志将下载的检查点路径传递给脚本。`--compute-unit` 表示您希望允许用于推理的硬件。它必须是以下选项之一:`ALL`、`CPU_AND_GPU`、`CPU_ONLY`、`CPU_AND_NE`。您也可以提供可选的输出路径和用于可重现性的种子。 推理脚本假设您使用的是 Stable Diffusion 模型的原始版本,`CompVis/stable-diffusion-v1-4`。如果您使用另一个模型,您*必须*在推理命令行中使用 `--model-version` 选项指定其 Hub ID。这适用于已支持的模型以及您自己训练或微调的自定义模型。 例如,如果您想使用 [`stable-diffusion-v1-5/stable-diffusion-v1-5`](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5): ```shell python -m python_coreml_stable_diffusion.pipeline --prompt "a photo of an astronaut riding a horse on mars" --compute-unit ALL -o output --seed 93 -i models/coreml-stable-diffusion-v1-5_original_packages --model-version stable-diffusion-v1-5/stable-diffusion-v1-5 ``` ## Core ML 在 Swift 中的推理 在 Swift 中运行推理比在 Python 中稍快,因为模型已经以 `mlmodelc` 格式编译。这在应用启动时加载模型时很明显,但如果在之后运行多次生成,则不应明显。 ### 下载 要在您的 Mac 上运行 Swift 推理,您需要一个 `compiled` 检查点版本。我们建议您使用类似于先前示例的 Python 代码在本地下载它们,但使用 `compiled` 变体之一: ```Python from huggingface_hub import snapshot_download from pathlib import Path repo_id = "apple/coreml-stable-diffusion-v1-4" variant = "original/compiled" model_path = Path("./models") / (repo_id.split("/")[-1] + "_" + variant.replace("/", "_")) snapshot_download(repo_id, allow_patterns=f"{variant}/*", local_dir=model_path, local_dir_use_symlinks=False) print(f"Model downloaded at {model_path}") ``` ### 推理[[swift-inference]] 要运行推理,请克隆 Apple 的仓库: ```bash git clone https://github.com/apple/ml-stable-diffusion cd ml-stable-diffusion ``` 然后使用 Apple 的命令行工具,[Swift Package Manager](https://www.swift.org/package-manager/#): ```bash swift run StableDiffusionSample --resource-path models/coreml-stable-diffusion-v1-4_original_compiled --compute-units all "a photo of an astronaut riding a horse on mars" ``` 您必须在 `--resource-path` 中指定上一步下载的检查点之一,请确保它包含扩展名为 `.mlmodelc` 的已编译 Core ML 包。`--compute-units` 必须是以下值之一:`all`、`cpuOnly`、`cpuAndGPU`、`cpuAndNeuralEngine`。 有关更多详细信息,请参考 [Apple 仓库中的说明](https://github.com/apple/ml-stable-diffusion)。 ## 支持的 Diffusers 功能 Core ML 模型和推理代码不支持 🧨 Diffusers 的许多功能、选项和灵活性。以下是一些需要注意的限制: - Core ML 模型仅适用于推理。它们不能用于训练或微调。 - 只有两个调度器已移植到 Swift:Stable Diffusion 使用的默认调度器和我们从 `diffusers` 实现移植到 Swift 的 `DPMSolverMultistepScheduler`。我们推荐您使用 `DPMSolverMultistepScheduler`,因为它在约一半的步骤中产生相同的质量。 - 负面提示、无分类器引导尺度和图像到图像任务在推理代码中可用。高级功能如深度引导、ControlNet 和潜在上采样器尚不可用。 Apple 的 [转换和推理仓库](https://github.com/apple/ml-stable-diffusion) 和我们自己的 [swift-coreml-diffusers](https://github.com/huggingface/swift-coreml-diffusers) 仓库旨在作为技术演示,以帮助其他开发者在此基础上构建。 如果您对任何缺失功能有强烈需求,请随时提交功能请求或更好的是,贡献一个 PR 🙂。 ## 原生 Diffusers Swift 应用 一个简单的方法来在您自己的 Apple 硬件上运行 Stable Diffusion 是使用 [我们的开源 Swift 仓库](https://github.com/huggingface/swift-coreml-diffusers),它基于 `diffusers` 和 Apple 的转换和推理仓库。您可以研究代码,使用 [Xcode](https://developer.apple.com/xcode/) 编译它,并根据您的需求进行适配。为了方便,[App Store 中还有一个独立 Mac 应用](https://apps.apple.com/app/diffusers/id1666309574),因此您无需处理代码或 IDE 即可使用它。如果您是开发者,并已确定 Core ML 是构建您的 Stable Diffusion 应用的最佳解决方案,那么您可以使用本指南的其余部分来开始您的项目。我们迫不及待想看看您会构建什么 🙂。