# 快速入门 模块化Diffusers是一个快速构建灵活和可定制管道的框架。模块化Diffusers的核心是[`ModularPipelineBlocks`],可以与其他块组合以适应新的工作流程。这些块被转换为[`ModularPipeline`],一个开发者可以使用的友好用户界面。 本文档将向您展示如何使用模块化框架实现[Differential Diffusion](https://differential-diffusion.github.io/)管道。 ## ModularPipelineBlocks [`ModularPipelineBlocks`]是*定义*,指定管道中单个步骤的组件、输入、输出和计算逻辑。有四种类型的块。 - [`ModularPipelineBlocks`]是最基本的单一步骤块。 - [`SequentialPipelineBlocks`]是一个多块,线性组合其他块。一个块的输出是下一个块的输入。 - [`LoopSequentialPipelineBlocks`]是一个多块,迭代运行,专为迭代工作流程设计。 - [`AutoPipelineBlocks`]是一个针对不同工作流程的块集合,它根据输入选择运行哪个块。它旨在方便地将多个工作流程打包到单个管道中。 [Differential Diffusion](https://differential-diffusion.github.io/)是一个图像到图像的工作流程。从`IMAGE2IMAGE_BLOCKS`预设开始,这是一个用于图像到图像生成的`ModularPipelineBlocks`集合。 ```py from diffusers.modular_pipelines.stable_diffusion_xl import IMAGE2IMAGE_BLOCKS IMAGE2IMAGE_BLOCKS = InsertableDict([ ("text_encoder", StableDiffusionXLTextEncoderStep), ("image_encoder", StableDiffusionXLVaeEncoderStep), ("input", StableDiffusionXLInputStep), ("set_timesteps", StableDiffusionXLImg2ImgSetTimestepsStep), ("prepare_latents", StableDiffusionXLImg2ImgPrepareLatentsStep), ("prepare_add_cond", StableDiffusionXLImg2ImgPrepareAdditionalConditioningStep), ("denoise", StableDiffusionXLDenoiseStep), ("decode", StableDiffusionXLDecodeStep) ]) ``` ## 管道和块状态 模块化Diffusers使用*状态*在块之间通信数据。有两种类型的状态。 - [`PipelineState`]是一个全局状态,可用于跟踪所有块的所有输入和输出。 - [`BlockState`]是[`PipelineState`]中相关变量的局部视图,用于单个块。 ## 自定义块 [Differential Diffusion](https://differential-diffusion.github.io/) 与标准的图像到图像转换在其 `prepare_latents` 和 `denoise` 块上有所不同。所有其他块都可以重用,但你需要修改这两个。 通过复制和修改现有的块,为 `prepare_latents` 和 `denoise` 创建占位符 `ModularPipelineBlocks`。 打印 `denoise` 块,可以看到它由 [`LoopSequentialPipelineBlocks`] 组成,包含三个子块,`before_denoiser`、`denoiser` 和 `after_denoiser`。只需要修改 `before_denoiser` 子块,根据变化图为去噪器准备潜在输入。 ```py denoise_blocks = IMAGE2IMAGE_BLOCKS["denoise"]() print(denoise_blocks) ``` 用新的 `SDXLDiffDiffLoopBeforeDenoiser` 块替换 `StableDiffusionXLLoopBeforeDenoiser` 子块。 ```py # 复制现有块作为占位符 class SDXLDiffDiffPrepareLatentsStep(ModularPipelineBlocks): """Copied from StableDiffusionXLImg2ImgPrepareLatentsStep - will modify later""" # ... 与 StableDiffusionXLImg2ImgPrepareLatentsStep 相同的实现 class SDXLDiffDiffDenoiseStep(StableDiffusionXLDenoiseLoopWrapper): block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLLoopDenoiser, StableDiffusionXLLoopAfterDenoiser] block_names = ["before_denoiser", "denoiser", "after_denoiser"] ``` ### prepare_latents `prepare_latents` 块需要进行以下更改。 - 一个处理器来处理变化图 - 一个新的 `inputs` 来接受用户提供的变化图,`timestep` 用于预计算所有潜在变量和 `num_inference_steps` 来创建更新图像区域的掩码 - 更新 `__call__` 方法中的计算,用于处理变化图和创建掩码,并将其存储在 [`BlockState`] 中 ```diff class SDXLDiffDiffPrepareLatentsStep(ModularPipelineBlocks): @property def expected_components(self) -> List[ComponentSpec]: return [ ComponentSpec("vae", AutoencoderKL), ComponentSpec("scheduler", EulerDiscreteScheduler), + ComponentSpec("mask_processor", VaeImageProcessor, config=FrozenDict({"do_normalize": False, "do_convert_grayscale": True})) ] @property def inputs(self) -> List[Tuple[str, Any]]: return [ InputParam("generator"), + InputParam("diffdiff_map", required=True), - InputParam("latent_timestep", required=True, type_hint=torch.Tensor), + InputParam("timesteps", type_hint=torch.Tensor), + InputParam("num_inference_steps", type_hint=int), ] @property def intermediate_outputs(self) -> List[OutputParam]: return [ + OutputParam("original_latents", type_hint=torch.Tensor), + OutputParam("diffdiff_masks", type_hint=torch.Tensor), ] def __call__(self, components, state: PipelineState): # ... existing logic ... + # Process change map and create masks + diffdiff_map = components.mask_processor.preprocess(block_state.diffdiff_map, height=latent_height, width=latent_width) + thresholds = torch.arange(block_state.num_inference_steps, dtype=diffdiff_map.dtype) / block_state.num_inference_steps + block_state.diffdiff_masks = diffdiff_map > (thresholds + (block_state.denoising_start or 0)) + block_state.original_latents = block_state.latents ``` ### 去噪 `before_denoiser` 子块需要进行以下更改。 - 新的 `inputs` 以接受 `denoising_start` 参数,`original_latents` 和 `diffdiff_masks` 来自 `prepare_latents` 块 - 更新 `__call__` 方法中的计算以应用 Differential Diffusion ```diff class SDXLDiffDiffLoopBeforeDenoiser(ModularPipelineBlocks): @property def description(self) -> str: return ( "Step within the denoising loop for differential diffusion that prepare the latent input for the denoiser" ) @property def inputs(self) -> List[str]: return [ InputParam("latents", required=True, type_hint=torch.Tensor), + InputParam("denoising_start"), + InputParam("original_latents", type_hint=torch.Tensor), + InputParam("diffdiff_masks", type_hint=torch.Tensor), ] def __call__(self, components, block_state, i, t): + # Apply differential diffusion logic + if i == 0 and block_state.denoising_start is None: + block_state.latents = block_state.original_latents[:1] + else: + block_state.mask = block_state.diffdiff_masks[i].unsqueeze(0).unsqueeze(1) + block_state.latents = block_state.original_latents[i] * block_state.mask + block_state.latents * (1 - block_state.mask) # ... rest of existing logic ... ``` ## 组装块 此时,您应该拥有创建 [`ModularPipeline`] 所需的所有块。 复制现有的 `IMAGE2IMAGE_BLOCKS` 预设,对于 `set_timesteps` 块,使用 `TEXT2IMAGE_BLOCKS` 中的 `set_timesteps`,因为 Differential Diffusion 不需要 `strength` 参数。 将 `prepare_latents` 和 `denoise` 块设置为您刚刚修改的 `SDXLDiffDiffPrepareLatentsStep` 和 `SDXLDiffDiffDenoiseStep` 块。 调用 [`SequentialPipelineBlocks.from_blocks_dict`] 在块上创建一个 `SequentialPipelineBlocks`。 ```py DIFFDIFF_BLOCKS = IMAGE2IMAGE_BLOCKS.copy() DIFFDIFF_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"] DIFFDIFF_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep DIFFDIFF_BLOCKS["denoise"] = SDXLDiffDiffDenoiseStep dd_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_BLOCKS) print(dd_blocks) ``` ## ModularPipeline 将 [`SequentialPipelineBlocks`] 转换为 [`ModularPipeline`],使用 [`ModularPipeline.init_pipeline`] 方法。这会初始化从 `modular_model_index.json` 文件加载的预期组件。通过调用 [`ModularPipeline.load_defau lt_components`]。 初始化[`ComponentManager`]时传入pipeline是一个好主意,以帮助管理不同的组件。一旦调用[`~ModularPipeline.load_components`],组件就会被注册到[`ComponentManager`]中,并且可以在工作流之间共享。下面的例子使用`collection`参数为组件分配了一个`"diffdiff"`标签,以便更好地组织。 ```py from diffusers.modular_pipelines import ComponentsManager components = ComponentManager() dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", components_manager=components, collection="diffdiff") dd_pipeline.load_default_componenets(torch_dtype=torch.float16) dd_pipeline.to("cuda") ``` ## 添加工作流 可以向[`ModularPipeline`]添加其他工作流以支持更多功能,而无需从头重写整个pipeline。 本节演示如何添加IP-Adapter或ControlNet。 ### IP-Adapter Stable Diffusion XL已经有一个预设的IP-Adapter块,你可以使用,并且不需要对现有的Differential Diffusion pipeline进行任何更改。 ```py from diffusers.modular_pipelines.stable_diffusion_xl.encoders import StableDiffusionXLAutoIPAdapterStep ip_adapter_block = StableDiffusionXLAutoIPAdapterStep() ``` 使用[`sub_blocks.insert`]方法将其插入到[`ModularPipeline`]中。下面的例子在位置`0`插入了`ip_adapter_block`。打印pipeline可以看到`ip_adapter_block`被添加了,并且它需要一个`ip_adapter_image`。这也向pipeline添加了两个组件,`image_encoder`和`feature_extractor`。 ```py dd_blocks.sub_blocks.insert("ip_adapter", ip_adapter_block, 0) ``` 调用[`~ModularPipeline.init_pipeline`]来初始化一个[`ModularPipeline`],并使用[`~ModularPipeline.load_components`]加载模型组件。加载并设置IP-Adapter以运行pipeline。 ```py dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff") dd_pipeline.load_components(torch_dtype=torch.float16) dd_pipeline.loader.load_ip_adapter("h94/IP-Adapter", subfolder="sdxl_models", weight_name="ip-adapter_sdxl.bin") dd_pipeline.loader.set_ip_adapter_scale(0.6) dd_pipeline = dd_pipeline.to(device) ip_adapter_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_orange.jpeg") image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true") mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true") prompt = "a green pear" negative_prompt = "blurry" generator = torch.Generator(device=device).manual_seed(42) image = dd_pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=25, generator=generator, ip_adapter_image=ip_adapter_image, diffdiff_map=mask, image=image, output="images" )[0] ``` ### ControlNet Stable Diffusion XL 已经预设了一个可以立即使用的 ControlNet 块。 ```py from diffusers.modular_pipelines.stable_diffusion_xl.modular_blocks import StableDiffusionXLAutoControlNetInputStep control_input_block = StableDiffusionXLAutoControlNetInputStep() ``` 然而,它需要修改 `denoise` 块,因为那是 ControlNet 将控制信息注入到 UNet 的地方。 通过将 `StableDiffusionXLLoopDenoiser` 子块替换为 `StableDiffusionXLControlNetLoopDenoiser` 来修改 `denoise` 块。 ```py class SDXLDiffDiffControlNetDenoiseStep(StableDiffusionXLDenoiseLoopWrapper): block_classes = [SDXLDiffDiffLoopBeforeDenoiser, StableDiffusionXLControlNetLoopDenoiser, StableDiffusionXLDenoiseLoopAfterDenoiser] block_names = ["before_denoiser", "denoiser", "after_denoiser"] controlnet_denoise_block = SDXLDiffDiffControlNetDenoiseStep() ``` 插入 `controlnet_input` 块并用新的 `controlnet_denoise_block` 替换 `denoise` 块。初始化一个 [`ModularPipeline`] 并将 [`~ModularPipeline.load_components`] 加载到其中。 ```py dd_blocks.sub_blocks.insert("controlnet_input", control_input_block, 7) dd_blocks.sub_blocks["denoise"] = controlnet_denoise_block dd_pipeline = dd_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff") dd_pipeline.load_components(torch_dtype=torch.float16) dd_pipeline = dd_pipeline.to(device) control_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/diffdiff_tomato_canny.jpeg") image = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/20240329211129_4024911930.png?download=true") mask = load_image("https://huggingface.co/datasets/OzzyGT/testing-resources/resolve/main/differential/gradient_mask.png?download=true") prompt = "a green pear" negative_prompt = "blurry" generator = torch.Generator(device=device).manual_seed(42) image = dd_pipeline( prompt=prompt, negative_prompt=negative_prompt, num_inference_steps=25, generator=generator, control_image=control_image, controlnet_conditioning_scale=0.5, diffdiff_map=mask, image=image, output="images" )[0] ``` ### AutoPipelineBlocks 差分扩散、IP-Adapter 和 ControlNet 工作流可以通过使用 [`AutoPipelineBlocks`] 捆绑到一个单一的 [`ModularPipeline`] 中。这允许根据输入如 `control_image` 或 `ip_adapter_image` 自动选择要运行的子块。如果没有传递这些输入,则默认为差分扩散。 使用 `block_trigger_inputs` 仅在提供 `control_image` 输入时运行 `SDXLDiffDiffControlNetDenoiseStep` 块。否则,使用 `SDXLDiffDiffDenoiseStep`。 ```py class SDXLDiffDiffAutoDenoiseStep(AutoPipelineBlocks): block_classes = [SDXLDiffDiffControlNetDenoiseStep, SDXLDiffDiffDenoiseStep] block_names = ["contr olnet_denoise", "denoise"] block_trigger_inputs = ["controlnet_cond", None] ``` 添加 `ip_adapter` 和 `controlnet_input` 块。 ```py DIFFDIFF_AUTO_BLOCKS = IMAGE2IMAGE_BLOCKS.copy() DIFFDIFF_AUTO_BLOCKS["prepare_latents"] = SDXLDiffDiffPrepareLatentsStep DIFFDIFF_AUTO_BLOCKS["set_timesteps"] = TEXT2IMAGE_BLOCKS["set_timesteps"] DIFFDIFF_AUTO_BLOCKS["denoise"] = SDXLDiffDiffAutoDenoiseStep DIFFDIFF_AUTO_BLOCKS.insert("ip_adapter", StableDiffusionXLAutoIPAdapterStep, 0) DIFFDIFF_AUTO_BLOCKS.insert("controlnet_input",StableDiffusionXLControlNetAutoInput, 7) ``` 调用 [`SequentialPipelineBlocks.from_blocks_dict`] 来创建一个 [`SequentialPipelineBlocks`] 并创建一个 [`ModularPipeline`] 并加载模型组件以运行。 ```py dd_auto_blocks = SequentialPipelineBlocks.from_blocks_dict(DIFFDIFF_AUTO_BLOCKS) dd_pipeline = dd_auto_blocks.init_pipeline("YiYiXu/modular-demo-auto", collection="diffdiff") dd_pipeline.load_components(torch_dtype=torch.float16) ``` ## 分享 使用 [`~ModularPipeline.save_pretrained`] 将您的 [`ModularPipeline`] 添加到 Hub,并将 `push_to_hub` 参数设置为 `True`。 ```py dd_pipeline.save_pretrained("YiYiXu/test_modular_doc", push_to_hub=True) ``` 其他用户可以使用 [`~ModularPipeline.from_pretrained`] 加载 [`ModularPipeline`]。 ```py import torch from diffusers.modular_pipelines import ModularPipeline, ComponentsManager components = ComponentsManager() diffdiff_pipeline = ModularPipeline.from_pretrained("YiYiXu/modular-diffdiff-0704", trust_remote_code=True, components_manager=components, collection="diffdiff") diffdiff_pipeline.load_components(torch_dtype=torch.float16) ```