# Diffusion模型评估指南 在 Colab 中打开 > [!TIP] > 鉴于当前已出现针对图像生成Diffusion模型的成熟评估框架(如[HEIM](https://crfm.stanford.edu/helm/heim/latest/)、[T2I-Compbench](https://huggingface.co/papers/2307.06350)、[GenEval](https://huggingface.co/papers/2310.11513)),本文档部分内容已过时。 像 [Stable Diffusion](https://huggingface.co/docs/diffusers/stable_diffusion) 这类生成模型的评估本质上是主观的。但作为开发者和研究者,我们经常需要在众多可能性中做出审慎选择。那么当面对不同生成模型(如 GANs、Diffusion 等)时,该如何决策? 定性评估容易产生偏差,可能导致错误结论;而定量指标又未必能准确反映图像质量。因此,通常需要结合定性与定量评估来获得更可靠的模型选择依据。 本文档将系统介绍扩散模型的定性与定量评估方法(非穷尽列举)。对于定量方法,我们将重点演示如何结合 `diffusers` 库实现这些评估。 文档所示方法同样适用于评估不同[噪声调度器](https://huggingface.co/docs/diffusers/main/en/api/schedulers/overview)在固定生成模型下的表现差异。 ## 评估场景 我们涵盖以下Diffusion模型管线的评估: - 文本引导图像生成(如 [`StableDiffusionPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/text2img)) - 基于文本和输入图像的引导生成(如 [`StableDiffusionImg2ImgPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/img2img) 和 [`StableDiffusionInstructPix2PixPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/pix2pix)) - 类别条件图像生成模型(如 [`DiTPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipe)) ## 定性评估 定性评估通常涉及对生成图像的人工评判。评估维度包括构图质量、图文对齐度和空间关系等方面。标准化的提示词能为这些主观指标提供统一基准。DrawBench和PartiPrompts是常用的定性评估提示词数据集,分别由[Imagen](https://imagen.research.google/)和[Parti](https://parti.research.google/)团队提出。 根据[Parti官方网站](https://parti.research.google/)说明: > PartiPrompts (P2)是我们发布的包含1600多个英文提示词的丰富集合,可用于测量模型在不同类别和挑战维度上的能力。 ![parti-prompts](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts.png) PartiPrompts包含以下字段: - Prompt(提示词) - Category(类别,如"抽象"、"世界知识"等) - Challenge(难度等级,如"基础"、"复杂"、"文字与符号"等) 这些基准测试支持对不同图像生成模型进行并排人工对比评估。为此,🧨 Diffusers团队构建了**Open Parti Prompts**——一个基于Parti Prompts的社区驱动型定性评估基准,用于比较顶尖开源diffusion模型: - [Open Parti Prompts游戏](https://huggingface.co/spaces/OpenGenAI/open-parti-prompts):展示10个parti提示词对应的4张生成图像,用户选择最符合提示的图片 - [Open Parti Prompts排行榜](https://huggingface.co/spaces/OpenGenAI/parti-prompts-leaderboard):对比当前最优开源diffusion模型的性能榜单 为进行手动图像对比,我们演示如何使用`diffusers`处理部分PartiPrompts提示词。 以下是从不同挑战维度(基础、复杂、语言结构、想象力、文字与符号)采样的提示词示例(使用[PartiPrompts作为数据集](https://huggingface.co/datasets/nateraw/parti-prompts)): ```python from datasets import load_dataset # prompts = load_dataset("nateraw/parti-prompts", split="train") # prompts = prompts.shuffle() # sample_prompts = [prompts[i]["Prompt"] for i in range(5)] # Fixing these sample prompts in the interest of reproducibility. sample_prompts = [ "a corgi", "a hot air balloon with a yin-yang symbol, with the moon visible in the daytime sky", "a car with no windows", "a cube made of porcupine", 'The saying "BE EXCELLENT TO EACH OTHER" written on a red brick wall with a graffiti image of a green alien wearing a tuxedo. A yellow fire hydrant is on a sidewalk in the foreground.', ] ``` 现在我们可以使用Stable Diffusion([v1-4 checkpoint](https://huggingface.co/CompVis/stable-diffusion-v1-4))生成这些提示词对应的图像: ```python import torch seed = 0 generator = torch.manual_seed(seed) images = sd_pipeline(sample_prompts, num_images_per_prompt=1, generator=generator).images ``` ![parti-prompts-14](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts-14.png) 我们也可以通过设置`num_images_per_prompt`参数来比较同一提示词生成的不同图像。使用不同检查点([v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5))运行相同流程后,结果如下: ![parti-prompts-15](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/parti-prompts-15.png) 当使用多个待评估模型为所有提示词生成若干图像后,这些结果将提交给人类评估员进行打分。有关DrawBench和PartiPrompts基准测试的更多细节,请参阅各自的论文。 > [!TIP] > 在模型训练过程中查看推理样本有助于评估训练进度。我们的[训练脚本](https://github.com/huggingface/diffusers/tree/main/examples/)支持此功能,并额外提供TensorBoard和Weights & Biases日志记录功能。 ## 定量评估 本节将指导您如何评估三种不同的扩散流程,使用以下指标: - CLIP分数 - CLIP方向相似度 - FID(弗雷歇起始距离) ### 文本引导图像生成 [CLIP分数](https://huggingface.co/papers/2104.08718)用于衡量图像-标题对的匹配程度。CLIP分数越高表明匹配度越高🔼。该分数是对"匹配度"这一定性概念的量化测量,也可以理解为图像与标题之间的语义相似度。研究发现CLIP分数与人类判断具有高度相关性。 首先加载[`StableDiffusionPipeline`]: ```python from diffusers import StableDiffusionPipeline import torch model_ckpt = "CompVis/stable-diffusion-v1-4" sd_pipeline = StableDiffusionPipeline.from_pretrained(model_ckpt, torch_dtype=torch.float16).to("cuda") ``` 使用多个提示词生成图像: ```python prompts = [ "a photo of an astronaut riding a horse on mars", "A high tech solarpunk utopia in the Amazon rainforest", "A pikachu fine dining with a view to the Eiffel Tower", "A mecha robot in a favela in expressionist style", "an insect robot preparing a delicious meal", "A small cabin on top of a snowy mountain in the style of Disney, artstation", ] images = sd_pipeline(prompts, num_images_per_prompt=1, output_type="np").images print(images.shape) # (6, 512, 512, 3) ``` 然后计算CLIP分数: ```python from torchmetrics.functional.multimodal import clip_score from functools import partial clip_score_fn = partial(clip_score, model_name_or_path="openai/clip-vit-base-patch16") def calculate_clip_score(images, prompts): images_int = (images * 255).astype("uint8") clip_score = clip_score_fn(torch.from_numpy(images_int).permute(0, 3, 1, 2), prompts).detach() return round(float(clip_score), 4) sd_clip_score = calculate_clip_score(images, prompts) print(f"CLIP分数: {sd_clip_score}") # CLIP分数: 35.7038 ``` 上述示例中,我们为每个提示生成一张图像。如果为每个提示生成多张图像,则需要计算每个提示生成图像的平均分数。 当需要比较两个兼容[`StableDiffusionPipeline`]的检查点时,应在调用管道时传入生成器。首先使用[v1-4 Stable Diffusion检查点](https://huggingface.co/CompVis/stable-diffusion-v1-4)以固定种子生成图像: ```python seed = 0 generator = torch.manual_seed(seed) images = sd_pipeline(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images ``` 然后加载[v1-5检查点](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)生成图像: ```python model_ckpt_1_5 = "stable-diffusion-v1-5/stable-diffusion-v1-5" sd_pipeline_1_5 = StableDiffusionPipeline.from_pretrained(model_ckpt_1_5, torch_dtype=torch.float16).to("cuda") images_1_5 = sd_pipeline_1_5(prompts, num_images_per_prompt=1, generator=generator, output_type="np").images ``` 最后比较两者的CLIP分数: ```python sd_clip_score_1_4 = calculate_clip_score(images, prompts) print(f"v-1-4版本的CLIP分数: {sd_clip_score_1_4}") # v-1-4版本的CLIP分数: 34.9102 sd_clip_score_1_5 = calculate_clip_score(images_1_5, prompts) print(f"v-1-5版本的CLIP分数: {sd_clip_score_1_5}") # v-1-5版本的CLIP分数: 36.2137 ``` 结果表明[v1-5](https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5)检查点性能优于前代。但需注意,我们用于计算CLIP分数的提示词数量较少。实际评估时应使用更多样化且数量更大的提示词集。 > [!WARNING] > 该分数存在固有局限性:训练数据中的标题是从网络爬取,并提取自图片关联的`alt`等标签。这些描述未必符合人类描述图像的方式,因此我们需要人工"设计"部分提示词。 ### 图像条件式文本生成图像 这种情况下,生成管道同时接受输入图像和文本提示作为条件。以[`StableDiffusionInstructPix2PixPipeline`]为例,该管道接收编辑指令作为输入提示,并接受待编辑的输入图像。 示例图示: ![编辑指令](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/edit-instruction.png) 评估此类模型的策略之一是测量两幅图像间变化的连贯性(通过[CLIP](https://huggingface.co/docs/transformers/model_doc/clip)定义)中两个图像之间的变化与两个图像描述之间的变化的一致性(如论文[《CLIP-Guided Domain Adaptation of Image Generators》](https://huggingface.co/papers/2108.00946)所示)。这被称为“**CLIP方向相似度**”。 - **描述1**对应输入图像(图像1),即待编辑的图像。 - **描述2**对应编辑后的图像(图像2),应反映编辑指令。 以下是示意图: ![edit-consistency](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/edit-consistency.png) 我们准备了一个小型数据集来实现该指标。首先加载数据集: ```python from datasets import load_dataset dataset = load_dataset("sayakpaul/instructpix2pix-demo", split="train") dataset.features ``` ```bash {'input': Value(dtype='string', id=None), 'edit': Value(dtype='string', id=None), 'output': Value(dtype='string', id=None), 'image': Image(decode=True, id=None)} ``` 数据字段说明: - `input`:与`image`对应的原始描述。 - `edit`:编辑指令。 - `output`:反映`edit`指令的修改后描述。 查看一个样本: ```python idx = 0 print(f"Original caption: {dataset[idx]['input']}") print(f"Edit instruction: {dataset[idx]['edit']}") print(f"Modified caption: {dataset[idx]['output']}") ``` ```bash Original caption: 2. FAROE ISLANDS: An archipelago of 18 mountainous isles in the North Atlantic Ocean between Norway and Iceland, the Faroe Islands has 'everything you could hope for', according to Big 7 Travel. It boasts 'crystal clear waterfalls, rocky cliffs that seem to jut out of nowhere and velvety green hills' Edit instruction: make the isles all white marble Modified caption: 2. WHITE MARBLE ISLANDS: An archipelago of 18 mountainous white marble isles in the North Atlantic Ocean between Norway and Iceland, the White Marble Islands has 'everything you could hope for', according to Big 7 Travel. It boasts 'crystal clear waterfalls, rocky cliffs that seem to jut out of nowhere and velvety green hills' ``` 对应的图像: ```python dataset[idx]["image"] ``` ![edit-dataset](https://huggingface.co/datasets/diffusers/docs-images/resolve/main/evaluation_diffusion_models/edit-dataset.png) 我们将根据编辑指令修改数据集中的图像,并计算方向相似度。 首先加载[`StableDiffusionInstructPix2PixPipeline`]: ```python from diffusers import StableDiffusionInstructPix2PixPipeline instruct_pix2pix_pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( "timbrooks/instruct-pix2pix", torch_dtype=torch.float16 ).to("cuda") ``` 执行编辑操作: ```python import numpy as np def edit_image(input_image, instruction): image = instruct_pix2pix_pipeline( instruction, image=input_image, output_type="np", generator=generator, ).images[0] return image input_images = [] original_captions = [] modified_captions = [] edited_images = [] for idx in range(len(dataset)): input_image = dataset[idx]["image"] edit_instruction = dataset[idx]["edit"] edited_image = edit_image(input_image, edit_instruction) input_images.append(np.array(input_image)) original_captions.append(dataset[idx]["input"]) modified_captions.append(dataset[idx]["output"]) edited_images.append(edited_image) ``` 为测量方向相似度,我们首先加载CLIP的图像和文本编码器: ```python from transformers import ( CLIPTokenizer, CLIPTextModelWithProjection, CLIPVisionModelWithProjection, CLIPImageProcessor, ) clip_id = "openai/clip-vit-large-patch14" tokenizer = CLIPTokenizer.from_pretrained(clip_id) text_encoder = CLIPTextModelWithProjection.from_pretrained(clip_id).to("cuda") image_processor = CLIPImageProcessor.from_pretrained(clip_id) image_encoder = CLIPVisionModelWithProjection.from_pretrained(clip_id).to("cuda") ``` 注意我们使用的是特定CLIP检查点——`openai/clip-vit-large-patch14`,因为Stable Diffusion预训练正是基于此CLIP变体。详见[文档](https://huggingface.co/docs/transformers/model_doc/clip)。 接着准备计算方向相似度的PyTorch `nn.Module`: ```python import torch.nn as nn import torch.nn.functional as F class DirectionalSimilarity(nn.Module): def __init__(self, tokenizer, text_encoder, image_processor, image_encoder): super().__init__() self.tokenizer = tokenizer self.text_encoder = text_encoder self.image_processor = image_processor self.image_encoder = image_encoder def preprocess_image(self, image): image = self.image_processor(image, return_tensors="pt")["pixel_values"] return {"pixel_values": image.to("cuda")} def tokenize_text(self, text): inputs = self.tokenizer( text, max_length=self.tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt", ) return {"input_ids": inputs.input_ids.to("cuda")} def encode_image(self, image): preprocessed_image = self.preprocess_image(image) image_features = self.image_encoder(**preprocessed_image).image_embeds image_features = image_features / image_features.norm(dim=1, keepdim=True) return image_features def encode_text(self, text): tokenized_text = self.tokenize_text(text) text_features = self.text_encoder(**tokenized_text).text_embeds text_features = text_features / text_features.norm(dim=1, keepdim=True) return text_features def compute_directional_similarity(self, img_feat_one, img_feat_two, text_feat_one, text_feat_two): sim_direction = F.cosine_similarity(img_feat_two - img_feat_one, text_feat_two - text_feat_one) return sim_direction def forward(self, image_one, image_two, caption_one, caption_two): img_feat_one = self.encode_image(image_one) img_feat_two = self.encode_image(image_two) text_feat_one = self.encode_text(caption_one) text_feat_two = self.encode_text(caption_two) directional_similarity = self.compute_directional_similarity( img_feat_one, img_feat_two, text_feat_one, text_feat_two ) return directional_similarity ``` 现在让我们使用`DirectionalSimilarity`模块: ```python dir_similarity = DirectionalSimilarity(tokenizer, text_encoder, image_processor, image_encoder) scores = [] for i in range(len(input_images)): original_image = input_images[i] original_caption = original_captions[i] edited_image = edited_images[i] modified_caption = modified_captions[i] similarity_score = dir_similarity(original_image, edited_image, original_caption, modified_caption) scores.append(float(similarity_score.detach().cpu())) print(f"CLIP方向相似度: {np.mean(scores)}") # CLIP方向相似度: 0.0797976553440094 ``` 与CLIP分数类似,CLIP方向相似度数值越高越好。 需要注意的是,`StableDiffusionInstructPix2PixPipeline`提供了两个控制参数`image_guidance_scale`和`guidance_scale`来调节最终编辑图像的质量。建议您尝试调整这两个参数,观察它们对方向相似度的影响。 我们可以扩展这个度量标准来评估原始图像与编辑版本的相似度,只需计算`F.cosine_similarity(img_feat_two, img_feat_one)`。对于这类编辑任务,我们仍希望尽可能保留图像的主要语义特征(即保持较高的相似度分数)。 该度量方法同样适用于类似流程,例如[`StableDiffusionPix2PixZeroPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/pix2pix_zero#diffusers.StableDiffusionPix2PixZeroPipeline)。 > [!TIP] > CLIP分数和CLIP方向相似度都依赖CLIP模型,可能导致评估结果存在偏差。 ***扩展IS、FID(后文讨论)或KID等指标存在困难***,当被评估模型是在大型图文数据集(如[LAION-5B数据集](https://laion.ai/blog/laion-5b/))上预训练时。因为这些指标的底层都使用了在ImageNet-1k数据集上预训练的InceptionNet来提取图像特征。Stable Diffusion的预训练数据集与InceptionNet的预训练数据集可能重叠有限,因此不适合作为特征提取器。 ***上述指标更适合评估类别条件模型***,例如[DiT](https://huggingface.co/docs/diffusers/main/en/api/pipelines/dit)。该模型是在ImageNet-1k类别条件下预训练的。 这是9篇文档中的第8部分。 ### 基于类别的图像生成 基于类别的生成模型通常是在带有类别标签的数据集(如[ImageNet-1k](https://huggingface.co/datasets/imagenet-1k))上进行预训练的。评估这些模型的常用指标包括Fréchet Inception Distance(FID)、Kernel Inception Distance(KID)和Inception Score(IS)。本文档重点介绍FID([Heusel等人](https://huggingface.co/papers/1706.08500)),并展示如何使用[`DiTPipeline`](https://huggingface.co/docs/diffusers/api/pipelines/dit)计算该指标,该管道底层使用了[DiT模型](https://huggingface.co/papers/2212.09748)。 FID旨在衡量两组图像数据集的相似程度。根据[此资源](https://mmgeneration.readthedocs.io/en/latest/quick_run.html#fid): > Fréchet Inception Distance是衡量两组图像数据集相似度的指标。研究表明其与人类对视觉质量的主观判断高度相关,因此最常用于评估生成对抗网络(GAN)生成样本的质量。FID通过计算Inception网络特征表示所拟合的两个高斯分布之间的Fréchet距离来实现。 这两个数据集本质上是真实图像数据集和生成图像数据集(本例中为人工生成的图像)。FID通常基于两个大型数据集计算,但本文档将使用两个小型数据集进行演示。 首先下载ImageNet-1k训练集中的部分图像: ```python from zipfile import ZipFile import requests def download(url, local_filepath): r = requests.get(url) with open(local_filepath, "wb") as f: f.write(r.content) return local_filepath dummy_dataset_url = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/sample-imagenet-images.zip" local_filepath = download(dummy_dataset_url, dummy_dataset_url.split("/")[-1]) with ZipFile(local_filepath, "r") as zipper: zipper.extractall(".") ``` ```python from PIL import Image import os import numpy as np dataset_path = "sample-imagenet-images" image_paths = sorted([os.path.join(dataset_path, x) for x in os.listdir(dataset_path)]) real_images = [np.array(Image.open(path).convert("RGB")) for path in image_paths] ``` 这些是来自以下ImageNet-1k类别的10张图像:"cassette_player"、"chain_saw"(2张)、"church"、"gas_pump"(3张)、"parachute"(2张)和"tench"。

真实图像
真实图像

加载图像后,我们对其进行轻量级预处理以便用于FID计算: ```python from torchvision.transforms import functional as F import torch def preprocess_image(image): image = torch.tensor(image).unsqueeze(0) image = image.permute(0, 3, 1, 2) / 255.0 return F.center_crop(image, (256, 256)) real_images = torch.stack([dit_pipeline.preprocess_image(image) for image in real_images]) print(real_images.shape) # torch.Size([10, 3, 256, 256]) ``` 我们现在加载[`DiTPipeline`](https://huggingface.co/docs/diffusers/api/pipelines/dit)来生成基于上述类别的条件图像。 ```python from diffusers import DiTPipeline, DPMSolverMultistepScheduler dit_pipeline = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256", torch_dtype=torch.float16) dit_pipeline.scheduler = DPMSolverMultistepScheduler.from_config(dit_pipeline.scheduler.config) dit_pipeline = dit_pipeline.to("cuda") seed = 0 generator = torch.manual_seed(seed) words = [ "cassette player", "chainsaw", "chainsaw", "church", "gas pump", "gas pump", "gas pump", "parachute", "parachute", "tench", ] class_ids = dit_pipeline.get_label_ids(words) output = dit_pipeline(class_labels=class_ids, generator=generator, output_type="np") fake_images = output.images fake_images = torch.tensor(fake_images) fake_images = fake_images.permute(0, 3, 1, 2) print(fake_images.shape) # torch.Size([10, 3, 256, 256]) ``` 现在,我们可以使用[`torchmetrics`](https://torchmetrics.readthedocs.io/)计算FID分数。 ```python from torchmetrics.image.fid import FrechetInceptionDistance fid = FrechetInceptionDistance(normalize=True) fid.update(real_images, real=True) fid.update(fake_images, real=False) print(f"FID分数: {float(fid.compute())}") # FID分数: 177.7147216796875 ``` FID分数越低越好。以下因素会影响FID结果: - 图像数量(包括真实图像和生成图像) - 扩散过程中引入的随机性 - 扩散过程的推理步数 - 扩散过程中使用的调度器 对于最后两点,最佳实践是使用不同的随机种子和推理步数进行多次评估,然后报告平均结果。 > [!WARNING] > FID结果往往具有脆弱性,因为它依赖于许多因素: > > * 计算过程中使用的特定Inception模型 > * 计算实现的准确性 > * 图像格式(PNG和JPG的起点不同) > > 需要注意的是,FID通常在比较相似实验时最有用,但除非作者仔细公开FID测量代码,否则很难复现论文结果。 > > 这些注意事项同样适用于其他相关指标,如KID和IS。 最后,让我们可视化检查这些`fake_images`。

生成图像
生成图像示例