# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import OmniGenTransformer2DModel from ...testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class OmniGenTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = OmniGenTransformer2DModel main_input_name = "hidden_states" uses_custom_attn_processor = True model_split_percents = [0.1, 0.1, 0.1] @property def dummy_input(self): batch_size = 2 num_channels = 4 height = 8 width = 8 sequence_length = 24 hidden_states = torch.randn((batch_size, num_channels, height, width)).to(torch_device) timestep = torch.rand(size=(batch_size,), dtype=hidden_states.dtype).to(torch_device) input_ids = torch.randint(0, 10, (batch_size, sequence_length)).to(torch_device) input_img_latents = [torch.randn((1, num_channels, height, width)).to(torch_device)] input_image_sizes = {0: [[0, 0 + height * width // 2 // 2]]} attn_seq_length = sequence_length + 1 + height * width // 2 // 2 attention_mask = torch.ones((batch_size, attn_seq_length, attn_seq_length)).to(torch_device) position_ids = torch.LongTensor([list(range(attn_seq_length))] * batch_size).to(torch_device) return { "hidden_states": hidden_states, "timestep": timestep, "input_ids": input_ids, "input_img_latents": input_img_latents, "input_image_sizes": input_image_sizes, "attention_mask": attention_mask, "position_ids": position_ids, } @property def input_shape(self): return (4, 8, 8) @property def output_shape(self): return (4, 8, 8) def prepare_init_args_and_inputs_for_common(self): init_dict = { "hidden_size": 16, "num_attention_heads": 4, "num_key_value_heads": 4, "intermediate_size": 32, "num_layers": 20, "pad_token_id": 0, "vocab_size": 1000, "in_channels": 4, "time_step_dim": 4, "rope_scaling": {"long_factor": list(range(1, 3)), "short_factor": list(range(1, 3))}, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"OmniGenTransformer2DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)