# coding=utf-8 # Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import LTXVideoTransformer3DModel from ...testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin, TorchCompileTesterMixin enable_full_determinism() class LTXTransformerTests(ModelTesterMixin, unittest.TestCase): model_class = LTXVideoTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 2 num_channels = 4 num_frames = 2 height = 16 width = 16 embedding_dim = 16 sequence_length = 16 hidden_states = torch.randn((batch_size, num_frames * height * width, num_channels)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, embedding_dim)).to(torch_device) encoder_attention_mask = torch.ones((batch_size, sequence_length)).bool().to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) return { "hidden_states": hidden_states, "encoder_hidden_states": encoder_hidden_states, "timestep": timestep, "encoder_attention_mask": encoder_attention_mask, "num_frames": num_frames, "height": height, "width": width, } @property def input_shape(self): return (512, 4) @property def output_shape(self): return (512, 4) def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 4, "out_channels": 4, "num_attention_heads": 2, "attention_head_dim": 8, "cross_attention_dim": 16, "num_layers": 1, "qk_norm": "rms_norm_across_heads", "caption_channels": 16, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"LTXVideoTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) class LTXTransformerCompileTests(TorchCompileTesterMixin, unittest.TestCase): model_class = LTXVideoTransformer3DModel def prepare_init_args_and_inputs_for_common(self): return LTXTransformerTests().prepare_init_args_and_inputs_for_common()