# Copyright 2025 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import torch from diffusers import CosmosTransformer3DModel from ...testing_utils import enable_full_determinism, torch_device from ..test_modeling_common import ModelTesterMixin enable_full_determinism() class CosmosTransformer3DModelTests(ModelTesterMixin, unittest.TestCase): model_class = CosmosTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 1 num_channels = 4 num_frames = 1 height = 16 width = 16 text_embed_dim = 16 sequence_length = 12 fps = 30 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, text_embed_dim)).to(torch_device) attention_mask = torch.ones((batch_size, sequence_length)).to(torch_device) padding_mask = torch.zeros(batch_size, 1, height, width).to(torch_device) return { "hidden_states": hidden_states, "timestep": timestep, "encoder_hidden_states": encoder_hidden_states, "attention_mask": attention_mask, "fps": fps, "padding_mask": padding_mask, } @property def input_shape(self): return (4, 1, 16, 16) @property def output_shape(self): return (4, 1, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 4, "out_channels": 4, "num_attention_heads": 2, "attention_head_dim": 12, "num_layers": 2, "mlp_ratio": 2, "text_embed_dim": 16, "adaln_lora_dim": 4, "max_size": (4, 32, 32), "patch_size": (1, 2, 2), "rope_scale": (2.0, 1.0, 1.0), "concat_padding_mask": True, "extra_pos_embed_type": "learnable", } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"CosmosTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set) class CosmosTransformer3DModelVideoToWorldTests(ModelTesterMixin, unittest.TestCase): model_class = CosmosTransformer3DModel main_input_name = "hidden_states" uses_custom_attn_processor = True @property def dummy_input(self): batch_size = 1 num_channels = 4 num_frames = 1 height = 16 width = 16 text_embed_dim = 16 sequence_length = 12 fps = 30 hidden_states = torch.randn((batch_size, num_channels, num_frames, height, width)).to(torch_device) timestep = torch.randint(0, 1000, size=(batch_size,)).to(torch_device) encoder_hidden_states = torch.randn((batch_size, sequence_length, text_embed_dim)).to(torch_device) attention_mask = torch.ones((batch_size, sequence_length)).to(torch_device) condition_mask = torch.ones(batch_size, 1, num_frames, height, width).to(torch_device) padding_mask = torch.zeros(batch_size, 1, height, width).to(torch_device) return { "hidden_states": hidden_states, "timestep": timestep, "encoder_hidden_states": encoder_hidden_states, "attention_mask": attention_mask, "fps": fps, "condition_mask": condition_mask, "padding_mask": padding_mask, } @property def input_shape(self): return (4, 1, 16, 16) @property def output_shape(self): return (4, 1, 16, 16) def prepare_init_args_and_inputs_for_common(self): init_dict = { "in_channels": 4 + 1, "out_channels": 4, "num_attention_heads": 2, "attention_head_dim": 12, "num_layers": 2, "mlp_ratio": 2, "text_embed_dim": 16, "adaln_lora_dim": 4, "max_size": (4, 32, 32), "patch_size": (1, 2, 2), "rope_scale": (2.0, 1.0, 1.0), "concat_padding_mask": True, "extra_pos_embed_type": "learnable", } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_gradient_checkpointing_is_applied(self): expected_set = {"CosmosTransformer3DModel"} super().test_gradient_checkpointing_is_applied(expected_set=expected_set)